63 research outputs found

    Air pollution from household solid fuel combustion in India: an overview of exposure and health related information to inform health research priorities

    Get PDF
    Environmental and occupational risk factors contribute to nearly 40% of the national burden of disease in India, with air pollution in the indoor and outdoor environment ranking amongst leading risk factors. It is now recognized that the health burden from air pollution exposures that primarily occur in the rural indoors, from pollutants released during the incomplete combustion of solid fuels in households, may rival or even exceed the burden attributable to urban outdoor exposures. Few environmental epidemiological efforts have been devoted to this setting, however. We provide an overview of important available information on exposures and health effects related to household solid fuel use in India, with a view to inform health research priorities for household air pollution and facilitate being able to address air pollution within an integrated rural–urban framework in the future

    Venous Blood Derivatives as FBS-Substitutes for Mesenchymal Stem Cells: A Systematic Scoping Review

    Full text link

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Validation of processing maps for 304L stainless steel using hot forging, rolling and extrusion

    No full text
    The development of a microstructure in 304L stainless steel during industrial hot-forming operations, including press forging (mean strain rate of 0.15 s(-1)), rolling/extrusion (2-5 s(-1)), and hammer forging (100 s(-1)) at different temperatures in the range 600-1200 degrees C, was studied with a view to validating the predictions of the processing map. The results have shown that excellent correlation exists between the regimes exhibited by the map and the product microstructures. 304L stainless steel exhibits instability bands when hammer forged at temperatures below 1100 degrees C, rolled/extruded below 1000 degrees C, or press forged below 800 degrees C. All of these conditions must be avoided in mechanical processing of the material. On the other hand, ideally, the material may be rolled, extruded, or press forged at 1200 degrees C to obtain a defect-free microstructure

    Industrial validation of processing maps of 316L stainless steel using hot forging, rolling, and extrusion

    No full text
    The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials
    corecore