4 research outputs found
Copper oxide as a "self-cleaning" substrate for graphene growth
Commonly used techniques for cleaning copper substrates before graphene growth via chemical vapor deposition (CVD), such as rinsing with acetone, nitric, and acetic acid, and high temperature hydrogen annealing still leave residual adventitious carbon on the copper surface. This residual carbon promotes graphene nucleation and leads to higher nucleation density. We find that copper with an oxidized surface can act as a self-cleaning substrate for graphene growth by CVD. Under vacuum conditions, copper oxide thermally decomposes, releasing oxygen from the substrate surface. The released oxygen reacts with the carbon residues on the copper surface and forms volatile carbon monoxide and carbon dioxide, leaving a clean copper surface free of carbon for large-area graphene growth. Using oxidized electropolished copper foil leads to a reduction in graphene nucleation density by over a factor of 1000 when compared to using chemically cleaned oxygen free copper foil
Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films
Graphene growth on Cu foils by catalytic decomposition of methane forms predominantly single-layer graphene films due to the low solubility of carbon in Cu. On the other hand, graphene growth on Cu-Ni foils can result in the controlled growth of few-layer graphene films because of the higher solubility of carbon in Ni. One of the key issues for the use of graphene grown by chemical vapor deposition for device applications is the influence of defects on the transport properties of the graphene. For instance, growth on metal foil substrates is expected to result in multidomain graphene growth because of the presence of grains within the foil that exhibit a variety of surface terminations. Therefore, the size and orientation of the grains within the metal foil should influence the defect density of the graphene. For this reason, we have studied the effect of total anneal time and temperature on the orientation and size of grains within Cu foils and Cu-Ni alloy foils with a nominal concentration of 90/10 by weight. The graphene growth procedure involves preannealing the foil in a H(2) background followed by the graphene growth in a CH(4)/H(2) atmosphere. Measurements of the substrate grain size have been performed with optical microscopy and scanning electron microscopy. These results show typical lateral dimensions ranging from a few millimeters up to approximately a centimeter for Cu foils annealed at 1030 degrees C for 35 min and from tens of microns up to a few hundred microns for the 90/10 Cu-Ni foils annealed at 1050 degrees C for times ranging from 45 to 90 min. The smaller grains within the Cu-Ni foils are attributed to the higher melting point of the Cu-Ni alloy. The crystallographic orientation within each substrate grain was studied with electron backscatter diffraction, and shows that the preferred orientation for the Cu foil is primarily toward the (100) surface plane. For the 90/10 Cu-Ni foils, the orientation of the surface of the grains is initially toward the (110) plane and shifts into an orientation midway between the (100) and (111) planes as the anneal time is increased
Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy
Several nanometer-thick graphene oxide films deposited on silicon nitride-on silicon substrates were exposed to nine different heat treatments (three in Argon, three in Argon and Hydrogen, and three in ultra-high vacuum), and also a film was held at 70 degrees C while being exposed to a vapor from hydrazine monohydrate. The films were characterized with atomic force microscopy to obtain local thickness and variation in thickness over extended regions. X-ray photoelectron spectroscopy was used to measure significant reduction of the oxygen content of the films; heating in ultra-high vacuum was particularly effective. The overtone region of the Raman spectrum was used, for the first time, to provide a "fingerprint" of changing oxygen content