9 research outputs found

    User Label Leakage from Gradients in Federated Learning

    Full text link
    Federated learning enables multiple users to build a joint model by sharing their model updates (gradients), while their raw data remains local on their devices. In contrast to the common belief that this provides privacy benefits, we here add to the very recent results on privacy risks when sharing gradients. Specifically, we propose Label Leakage from Gradients (LLG), a novel attack to extract the labels of the users' training data from their shared gradients. The attack exploits the direction and magnitude of gradients to determine the presence or absence of any label. LLG is simple yet effective, capable of leaking potential sensitive information represented by labels, and scales well to arbitrary batch sizes and multiple classes. We empirically and mathematically demonstrate the validity of our attack under different settings. Moreover, empirical results show that LLG successfully extracts labels with high accuracy at the early stages of model training. We also discuss different defense mechanisms against such leakage. Our findings suggest that gradient compression is a practical technique to prevent our attack

    Predictive Whittle Networks for Time Series

    No full text
    Dataset for paper "Predictive Whittle Networks for Time Series" Use with code at: https://github.com/ml-research/PW

    DAFNe: A One-Stage Anchor-Free Approach for Oriented Object Detection

    Full text link
    We present DAFNe, a Dense one-stage Anchor-Free deep Network for oriented object detection. As a one-stage model, it performs bounding box predictions on a dense grid over the input image, being architecturally simpler in design, as well as easier to optimize than its two-stage counterparts. Furthermore, as an anchor-free model, it reduces the prediction complexity by refraining from employing bounding box anchors. With DAFNe we introduce an orientation-aware generalization of the center-ness function for arbitrarily oriented bounding boxes to down-weight low-quality predictions and a center-to-corner bounding box prediction strategy that improves object localization performance. Our experiments show that DAFNe outperforms all previous one-stage anchor-free models on DOTA 1.0, DOTA 1.5, and UCAS-AOD and is on par with the best models on HRSC2016.Comment: Main paper: 8 pages, References: 2 pages, Appendix: 7 pages; Main paper: 6 figures, Appendix: 6 figure

    End-to-end learning of deep spatio-temporal representations for satellite image time series classification

    No full text
    In this paper we describe our first-place solution to the discovery challenge on time series land cover classification (TiSeLaC), organized in conjunction of ECML PKDD 2017. The challenge consists in predicting the Land Cover class of a set of pixels given their image time series data acquired by the satellites. We propose an end-to-end learning approach employing both temporal and spatial information and requiring very little data preprocessing and feature engineering. In this report we detail the architecture that ranked first-out of 21 teams-comprising modules using dense multi-layer perceptrons and one-dimensional convolutional neural networks. We discuss this architecture properties in detail as well as several possible enhancements

    User-Level Label Leakage from Gradients in Federated Learning

    No full text
    Federated learning enables multiple users to build a joint model by sharing their model updates (gradients), while their raw data remains local on their devices. In contrast to the common belief that this provides privacy benefits, we here add to the very recent results on privacy risks when sharing gradients. Specifically, we investigate Label Leakage from Gradients (LLG), a novel attack to extract the labels of the users’ training data from their shared gradients. The attack exploits the direction and magnitude of gradients to determine the presence or absence of any label. LLG is simple yet effective, capable of leaking potential sensitive information represented by labels, and scales well to arbitrary batch sizes and multiple classes. We mathematically and empirically demonstrate the validity of the attack under different settings. Moreover, empirical results show that LLG successfully extracts labels with high accuracy at the early stages of model training. We also discuss different defense mechanisms against such leakage. Our findings suggest that gradient compression is a practical technique to mitigate the attack

    User-Level Label Leakage from Gradients in Federated Learning

    No full text
    Federated learning enables multiple users to build a joint model by sharing their model updates (gradients), while their raw data remains local on their devices. In contrast to the common belief that this provides privacy benefits, we here add to the very recent results on privacy risks when sharing gradients. Specifically, we investigate Label Leakage from Gradients (LLG), a novel attack to extract the labels of the users’ training data from their shared gradients. The attack exploits the direction and magnitude of gradients to determine the presence or absence of any label. LLG is simple yet effective, capable of leaking potential sensitive information represented by labels, and scales well to arbitrary batch sizes and multiple classes. We mathematically and empirically demonstrate the validity of the attack under different settings. Moreover, empirical results show that LLG successfully extracts labels with high accuracy at the early stages of model training. We also discuss different defense mechanisms against such leakage. Our findings suggest that gradient compression is a practical technique to mitigat
    corecore