61 research outputs found

    Optical Spectroscopy of GX 339-4 - Paper I: Orbital Modulation

    Get PDF
    Optical spectroscopic observations of GX 339-4 were carried out between 1998 May (X-ray high state) and 1999 May (X-ray low state) over 7 epochs. The equivalent width of Halpha increased during the high state then decreased during the low state. The equivalent width of HeII 4686 decreased over both states. The full-width half-maximum of Halpha, Hbeta, HeII 4686 and the Bowen Blend increased from 1998 to 1999 indicating that the emission line regions moved closer to the compact object. Hbeta shows a redshifted absorption feature at 4880 angstroms at all epochs. This line remains unidentified. Analysis of individual spectra from 1998 May 28-31 show modulation of the radial velocities, equivalent width and V/R ratios of Halpha on the 14.86 hour orbital period. The equivalent width of HeII 4686 also varies on the orbital period. This is the first time since the study of Calanan et al. (1992) that spectroscopic data has confirmed the orbital period. The semi-amplitude of the Halpha radial velocities is K_1 = 14 km/s. Hence the mass function = 2 x 10^(-4) Msun.Comment: 15 pages, 17 figures, accepted by MNRA

    Stellar Masses, Kinematics, and White Dwarf Composition for Three Close DA+dMe Binaries

    Get PDF
    We determine the mass functions and mass ratios for three close white dwarf plus red dwarf binaries (EUVE J0720-317, 1016-053, and 2013+400). Hubble Space Telescope Goddard High-Resolution Spectrograph spectra of the He II λ1640 and C IV λ1550 spectral lines trace the white dwarf orbital motion, and Hamilton Spectrograph echelle spectra (Lick Observatory) and lower dispersion spectra trace the red dwarf orbital motion. The data sets allow us to measure orbital periods and velocities, as well as the white dwarf gravitational redshifts. The red dwarf and white dwarf mass estimates obtained from a combination of independent mass measurements for the white dwarf stars and our new orbital elements help constrain probable evolutionary outcomes. We find that EUVE J0720-317 will probably come into contact within a Hubble time and that the mass transfer will be unstable on a dynamical time. We also conclude that the much lower secondary masses in EUVE J1016-053 and EUVE J2013+400 exclude the possibility of significant interaction in these systems. We also present new helium and carbon photospheric abundance measurements in the three white dwarfs. The white dwarf atmospheric composition may show the effects of accretion of red dwarf mass-loss material onto its surface. Finally, we study the kinematics of the systems, and we also show that the white dwarf in EUVE J1016-053 is part of a quadruple system

    Hot White Dwarfs in the Extreme ‐ Ultraviolet Explorer Survey. IV. DA White Dwarfs with Bright Companions

    Get PDF
    We present an analysis of optical, ultraviolet, and X-ray spectral properties of a sample of 13 hot hydrogen-rich (DA) white dwarfs, each paired with a luminous unresolved companion. Using low-dispersion International Ultraviolet Explorer spectra, ROSAT photometry, and Extreme-Ultraviolet Explorer photometry and spectroscopy, we estimate the effective temperature, mass, and distance of the white dwarfs. Additionally, we examine the question of their atmospheric composition. We establish orbital properties for most binaries by means of high-dispersion optical spectroscopy obtained with the Hamilton echelle spectrograph at Lick Observatory; the same data help uncover evidence of activity in some of the secondary stars that is also notable in ROSAT X-ray measurements. In particular, we find high-amplitude (\u3e20 km s-1) velocity variations in only two stars (HD 33959C and HR 8210), low-amplitude variations in four additional objects (HD 18131, HR 1608, θ Hya, and BD +27°1888), and no variations (\u3c2 km s-1) in the remainder. We have observed Ca H and K in emission in four (BD +08°102, HD 18131, HR 1608, and EUVE J0702+129) of the six objects that were also detected in the 0.52-2.01 keV ROSAT PSPC band, while the source of the hard X-ray emission in HD 33959C remains unknown; other investigators have noted some evidence of activity in the remaining 0.52-2.01 keV detection, HD 217411. Properties of the white dwarfs are also investigated; EUV spectroscopy shows the effect of a low heavy element abundance in the atmosphere of the white dwarf in HD 33959C and of a high heavy element abundance in HD 223816; measurements of all other objects are apparently consistent with emission from pure-hydrogen atmospheres. However, current data do not constrain well the white dwarf parameters, and, to remedy the situation, we propose to obtain spectroscopy of the complete H Lyman line series

    Iron in Hot DA White Dwarfs

    Get PDF
    We present a study of the iron abundance pattern in hot hydrogen-rich (DA) white dwarfs. The study is based on new and archival far ultraviolet spectroscopy of a sample of white dwarfs in the temperature range 30,000 K < T_eff < 64,000 K. The spectra obtained with the Far Ultraviolet Spectroscopic Explorer along with spectra obtained with the Hubble Space Telescope Imaging Spectrograph and the International Ultraviolet Explorer sample FeIII to FeVI absorption lines enabling a detailed iron abundance analysis over a wider range of effective temperatures than previously afforded. The measurements reveal abundance variations in excess of two orders of magnitude between the highest and the lowest temperatures probed, but also show considerable variations (over one order of magnitude) between objects with similar temperatures and surface gravities. Such variations in cooler objects may be imputed to accretion from unseen companions or so-called circumstellar debris although the effect of residual mass-loss and selective radiation pressure in the hottest objects in the sample remain dominant.Comment: Accepted for publication in Ap
    corecore