77 research outputs found

    Unveiling the Mechanisms for Decreased Glutathione in Individuals with HIV Infection

    Get PDF
    We examined the causes for decreased glutathione (GSH) in individuals with HIV infection. We observed lower levels of intracellular GSH in macrophages from individuals with HIV compared to healthy subjects. Further, the GSH composition found in macrophages from HIV+ subjects heavily favors oxidized glutathione (GSSG) which lacks antioxidant activity, over free GSH which is responsible for GSH's antioxidant activity. This decrease correlated with an increase in the growth of Mycobacterium tuberculosis (M. tb) in macrophages from HIV+ individuals. In addition, we observed increased levels of free radicals, interleukin-1 (IL-1), interleukin-17 (IL-17) and transforming growth factor-β (TGF-β) in plasma samples derived from HIV+ individuals compared to healthy subjects. We observed decreased expression of the genes coding for enzymes responsible for de novo synthesis of GSH in macrophages derived from HIV+ subjects using quantitative PCR (qPCR). Our results indicate that overproduction of proinflammatory cytokines in HIV+ individuals lead to increased production of free radicals. This combined with the decreased expression of GSH synthesis enzymes leads to a depletion of free GSH and may lead in part to the loss of immune function observed in HIV patients

    The Synergistic Effects of the Glutathione Precursor, NAC and First-Line Antibiotics in the Granulomatous Response Against Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis (M. tb), the causative bacterial agent responsible for tuberculosis (TB) continues to afflict millions of people worldwide. Although the human immune system plays a critical role in containing M. tb infection, elimination proves immensely more challenging. Consequently, there has been a worldwide effort to eradicate, and limit the spread of M. tb through the conventional use of first-line antibiotics. Unfortunately, with the emergence of drug resistant and multi-drug resistant strains of M. tb the archetypical antibiotics no longer provide the same ascendancy as they once did. Furthermore, when administered, these first-line antibiotics commonly present severe complications and side effects. The biological antioxidant glutathione (GSH) however, has been demonstrated to have a profound mycobactericidal effect with no reported adverse consequences. Therefore, we examined if N-Acetyl Cysteine (NAC), the molecular precursor to GSH, when supplemented in combination with suboptimal levels of standalone first-line antibiotics would be sufficient to completely clear M. tb infection within in vitro derived granulomas from healthy subjects and individuals with type 2 diabetes (T2DM). Our results revealed that by virtue of immune modulation, the addition of NAC to subprime levels of isoniazid (INH) and rifampicin (RIF) was indeed capable of inducing complete clearance of M. tb among healthy individuals

    Glutathione and growth inhibition of Mycobacterium tuberculosis in healthy and HIV infected subjects

    Get PDF
    Intracellular levels of glutathione are depleted in patients with acquired immunodeficiency syndrome in whom the risk of tuberculosis, particularly disseminated disease is many times that of healthy individuals. In this study, we examined the role of glutathione in immunity against tuberculosis infection in samples derived from healthy and human immunodeficiency virus infected subjects. Our studies confirm that glutathione levels are reduced in peripheral blood mononuclear cells and in red blood cells isolated from human immunodeficiency virus-infected subjects (CD4>400/cumm). Furthermore, treatment of blood cultures from human immunodeficiency virus infected subjects with N-acetyl cysteine, a glutathione precursor, caused improved control of intracellular M. tuberculosis infection. N-acetyl cysteine treatment decreased the levels of IL-1, TNF-α, and IL-6, and increased the levels of IFN-γ in blood cultures derived from human immunodeficiency virus-infected subjects, promoting the host immune responses to contain M. tuberculosis infection successfully

    Additive Effects of Cyclic Peptide [R4W4] When Added Alongside Azithromycin and Rifampicin against \u3cem\u3eMycobacterium avium\u3c/em\u3e Infection

    Get PDF
    Mycobacterium avium (M. avium), a type of nontuberculous mycobacteria (NTM), poses a risk for pulmonary infections and disseminated infections in immunocompromised individuals. Conventional treatment consists of a 12-month regimen of the first-line antibiotics rifampicin and azithromycin. However, the treatment duration and low antibiotic tolerability present challenges in the treatment of M. avium infection. Furthermore, the emergence of multidrug-resistant mycobacterium strains prompts a need for novel treatments against M. avium infection. This study aims to test the efficacy of a novel antimicrobial peptide, cyclic [R4W4], alongside the first-line antibiotics azithromycin and rifampicin in reducing M. avium survival. Colony-forming unit (CFU) counts were assessed after treating M. avium cultures with varying concentrations of cyclic [R4W4] alone or in conjunction with azithromycin or rifampicin 3 h and 4 days post-treatment. M. avium growth was significantly reduced 4 days after cyclic [R4W4] single treatment. Additionally, cyclic [R4W4]–azithromycin and cyclic [R4W4]–rifampicin combination treatments at specific concentrations significantly reduced M. avium survival 3 h and 4 days post-treatment compared with single antibiotic treatment alone. These findings demonstrate cyclic [R4W4] as a potent treatment method against M. avium and provide insight into novel therapeutic approaches against mycobacterium infections

    Cyclic Peptide [R4W4] in Improving the Ability of First-Line Antibiotics to Inhibit \u3cem\u3eMycobacterium tuberculosis\u3c/em\u3e Inside \u3cem\u3ein vitro\u3c/em\u3e Human Granulomas

    Get PDF
    Tuberculosis (TB) is currently one of the leading causes of global mortality. Medical non-compliance due to the length of the treatment and antibiotic side effects has led to the emergence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (M. tb) that are difficult to treat. A current therapeutic strategy attempting to circumvent this issue aims to enhance drug delivery to reduce the duration of the antibiotic regimen or dosage of first-line antibiotics. One such agent that may help is cyclic peptide [R4W4], as it has been shown to have antibacterial properties (in combination with tetracycline) against methicillin-resistant Staphylococcus aureus (MRSA) in the past. The objective of this study is to test cyclic peptide [R4W4] both alone and in combination with current first-line antibiotics (either isoniazid or pyrazinamide) to study the effects of inhibition of M. tb inside in vitro human granulomas. Results from our studies indicate that [R4W4] is efficacious in controlling M. tb infection in the granulomas and has enhanced inhibitory effects in the presence of first-line antibiotics

    Glutathione and Adaptive Immune Responses against Mycobacterium tuberculosis Infection in Healthy and HIV Infected Individuals

    Get PDF
    Glutathione (GSH), a tripeptide antioxidant, is essential for cellular homeostasis and plays a vital role in diverse cellular functions. Individuals who are infected with Human immuno deficiency virus (HIV) are known to be susceptible to Mycobacterium tuberculosis (M. tb) infection. We report that by enhancing GSH levels, T-cells are able to inhibit the growth of M. tb inside macrophages. In addition, those GSH-replenished T cell cultures produced increased levels of Interleukin-2 (IL-2), Interleukin-12 (IL-12), and Interferon-gamma (IFN-γ), cytokines, which are known to be crucial for the control of intracellular pathogens. Our study reveals that T lymphocytes that are derived from HIV infected individuals are deficient in GSH, and that this deficiency correlates with decreased levels of Th1 cytokines and enhanced growth of M. tb inside human macrophages

    Recent Advances in Mycobacterial Research

    No full text
    Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease that is responsible for causing significant morbidity and death [...

    SARS-CoV-2 and the Immune Response in Pregnancy with Delta Variant Considerations

    No full text
    As of September 2021, there has been a total of 123,633 confirmed cases of pregnant women with SARS-CoV-2 infection in the US according to the CDC, with maternal death being 2.85 times more likely, pre-eclampsia 1.33 times more likely, preterm birth 1.47 times more likely, still birth 2.84 times more likely, and NICU admission 4.89 times more likely when compared to pregnant women without COVID-19 infection. In our literature review, we have identified eight key changes in the immunological functioning of the pregnant body that may predispose the pregnant patient to both a greater susceptibility to SARS-CoV-2, as well as a more severe disease course. Factors that may impede immune clearance of SARS-CoV-2 include decreased levels of natural killer (NK) cells, Th1 CD4+ T cells, plasmacytoid dendritic cells (pDC), a decreased phagocytic index of neutrophil granulocytes and monocytes, as well as the immunomodulatory properties of progesterone, which is elevated in pregnancy. Factors that may exacerbate SARS-CoV-2 morbidity through hyperinflammatory states include increases in the complement system, which are linked to greater lung injury, as well as increases in TLR-1 and TLR-7, which are known to bind to the virus, leading to increased proinflammatory cytokines such as IL-6 and TNF-α, which are already elevated in normal pregnant physiology. Other considerations include an increase in angiotensin converting enzyme 2 (ACE2) in the maternal circulation, leading to increased viral binding on the host cell, as well as increased IL-6 and decreased regulatory T cells in pre-eclampsia. We also focus on how the Delta variant has had a concerning impact on SARS-CoV-2 cases in pregnancy, with an increased case volume and proportion of ICU admissions among the infected expecting mothers. We propose that the effects of the Delta variant are due to a combination of (1) the Delta variant itself being more transmissible, contagious, and efficient at infecting host cells, (2) initial evidence pointing to the Delta variant causing a significantly greater viral load that accumulates more rapidly in the respiratory system, (3) the pregnancy state being more susceptible to SARS-CoV-2 infection, as discussed in-depth, and (4) the lower rates of vaccination in pregnant women compared to the general population. In the face of continually evolving strains and the relatively low awareness of COVID-19 vaccination for pregnant women, it is imperative that we continue to push for global vaccine equity

    A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV

    No full text
    Mycobacterium tuberculosis (Mtb) is a highly infectious acid-fast bacillus and is known to cause tuberculosis (TB) in humans. It is a leading cause of death from a sole infectious agent, with an estimated 1.5 million deaths yearly worldwide, and up to one third of the world’s population has been infected with TB. The virulence and susceptibility of Mtb are further amplified in the presence of Human Immunodeficiency Virus (HIV). Coinfection with Mtb and HIV forms a lethal combination. Previous studies had demonstrated the synergistic effects of Mtb and HIV, with one disease accelerating the disease progression of the other through multiple mechanisms, including the modulation of the immune response to these two pathogens. The response of the endosomal pattern recognition receptors to these two pathogens, specifically toll-like receptors (TLR)-3, -7, and -9, has not been elucidated, with some studies producing mixed results. This article seeks to review the roles of TLR-3, -7, and -9 in response to Mtb infection, as well as Mtb-HIV-coinfection via Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing INF-β (TRIF)-dependent and myeloid differentiation factor 88 (MyD88)-dependent pathways
    corecore