47 research outputs found
Tensile Deformation of a Nickel-Base Alloy at Elevated Temperatures
The results of tensile testing involving Waspaloy indicate that the failure strain was gradually reduced at temperatures ranging between ambient and 300 °C. Further, serrations were observed in the engineering stress versus strain diagrams in the temperature range of 300-600 °C. The reduced failure strain and the formation of serrations in these temperature regimes could be the result of dynamic strain aging of this alloy. The extent of work hardening due to plastic deformation was reduced at temperatures above 300 °C. A combination of ductile and intergranular brittle failures was seen at temperatures above 600 °C. γ′ was detected at all tested temperatures
Residual Stress Characterization in Structural Materials by Destructive and Nondestructive Techniques
Transmutation of nuclear waste is currently being considered to transform long-lived isotopes to species with relatively short half-lives and reduced radioactivity through capture and decay of minor actinides and fission products. This process is intended for geologic disposal of spent nuclear fuels for shorter durations in the proposed Yucca Mountain repository. The molten lead-bismuth-eutectic will be used as a target and coolant during transmutation, which will be contained in a subsystem vessel made from materials such as austenitic (304L) and martensitic (EP-823 and HT-9) stainless steels. The structural materials used in this vessel will be subjected to welding operations and plastic deformation during fabrication. The resultant residual stresses cannot be totally eliminated even by stress-relief operations. Destructive and nondestructive techniques have been used to evaluate residual stresses in the welded and cold-worked specimens. Results indicate that tensile residual stresses were generated at the fusion line of the welded specimens made from either austenitic or martensitic stainless steel, with reduced stresses away from this region. The magnitude of residual stress in the cold-worked specimens was enhanced at intermediate cold-reduction levels, showing tensile residual stresses in the austenitic material while exhibiting compressive stresses in the martensitic alloys. Comparative analyses of the resultant data obtained by different techniques revealed consistent stress patterns
Comparison of myocardial fibrosis quantification methods by cardiovascular magnetic resonance imaging for risk stratification of patients with suspected myocarditis
Abstract
Background
Although the presence of late gadolinium enhancement (LGE) using cardiovascular magnetic resonance imaging (CMR) is a significant discriminator of events in patients with suspected myocarditis, no data are available on the optimal LGE quantification method.
Methods
Six hundred seventy consecutive patients (48 ± 16 years, 59% male) with suspected myocarditis were enrolled between 2002 and 2015. We performed LGE quantitation using seven different signal intensity thresholding methods based either on 2, 3, 4, 5, 6, 7 standard deviations (SD) above remote myocardium or full width at half maximum (FWHM). In addition, a LGE visual presence score (LGE-VPS) (LGE present/absent in each segment) was assessed. For each of these methods, the strength of association of LGE results with major adverse cardiac events (MACE) was determined. Inter-and intra-rater variability using intraclass-correlation coefficient (ICC) was performed for all methods.
Results
Ninety-eight (15%) patients experienced a MACE at a medium follow-up of 4.7 years. LGE quantification by FWHM, 2- and 3-SD demonstrated univariable association with MACE (hazard ratio [HR] 1.05, 95% confidence interval [CI]:1.02–1.08, p = 0.001; HR 1.02, 95%CI:1.00–1.04; p = 0.001; HR 1.02, 95%CI: 1.00–1.05, p = 0.035, respectively), whereas 4-SD through 7-SD methods did not reach significant association. LGE-VPS also demonstrated association with MACE (HR 1.09, 95%CI: 1.04–1.15, p < 0.001). In the multivariable model, FWHM, 2-SD methods, and LGE-VPS each demonstrated significant association with MACE adjusted to age, sex, BMI and LVEF (adjusted HR of 1.04, 1.02, and 1.07; p = 0.009, p = 0.035; and p = 0.005, respectively). In these, FWHM and LGE-VPS had the highest degrees of inter and intra-rater reproducibility based on their high ICC values.
Conclusions
FWHM is the optimal semi-automated quantification method in risk-stratifying patients with suspected myocarditis, demonstrating the strongest association with MACE and the highest technical consistency. Visual LGE scoring is a reliable alternative method and is associated with a comparable association with MACE and reproducibility in these patients.
Trial registration number
NCT03470571
. Registered 13th March 2018. Retrospectively registered.https://deepblue.lib.umich.edu/bitstream/2027.42/148145/1/12968_2019_Article_520.pd
Recommended from our members
Clinical experiences of delayed contrast enhancement with cardiac computed tomography: case series
Background: Myocardial delayed enhancement (MDE) by gadolinium-enhanced cardiac MRI is well established for myocardial scar assessment in ischemic and non-ischemic heart disease. The role of MDE by cardiac CT (CT-MDE) is not yet defined. Findings: We reviewed all clinical cases of CT-MDE at a tertiary referral center to present the cases as a case series. All clinical cardiac CT exams which utilized CT-MDE imaging between January 1, 2005 and October 1, 2010 were collected as a series and their findings were also compared with available myocardial imaging to assess for myocardial abnormalities, including echocardiography (wall motion, morphology), cardiac MRI (delayed enhancement, morphology), SPECT MPI (perfusion defects). 5,860 clinical cardiac CT exams were performed during the study period. CT-MDE was obtained in 18 patients and was reported to be present in 9 patients. The indications for CT-MDE included ischemic and non-ischemic heart diseases. In segments positive for CT-MDE, there was excellent agreement of CT with other modalities: echocardiography (n=8) demonstrated abnormal morphology and wall motion (k=1.0 and k=0.82 respectively); prior MRI (n=2) demonstrated abnormal delayed enhancement (MR-MDE) (k=1.0); SPECT MPI (n=1) demonstrated fixed perfusion defects (k=1.0). In the subset of patients without CT-MDE, no abnormal segments were identified by echocardiography (n=8), MRI (n=1) and nuclear MPI (n=0). Conclusions: CT-MDE was performed in rare clinical situations. The indications included both ischemic and non-ischemic heart disease and there was an excellent agreement between CT-MDE and abnormal myocardium by echocardiography, cardiac MRI, and nuclear MPI
Recommended from our members
Risk Stratification by Regadenoson Stress Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease
The aim of this study was to investigate the association between major adverse cardiovascular events (MACEs) and inducible ischemia on regadenoson cardiac magnetic resonance (CMR) myocardial perfusion imaging (MPI) performed at 3.0 T. Regadenoson stress CMR MPI is increasingly used to assess patients with suspected ischemia; however, its value in patient prognostication and risk reclassification is only emerging. A total of 346 patients with suspected ischemia who were referred for regadenoson CMR were studied. The prognostic association of presence of inducible ischemia by CMR with MACEs was determined. In addition, we assessed the extent of net reclassification improvement by CMR beyond a clinical risk model. There were 52 MACEs during a median follow-up period of 1.9 years. Patients with inducible ischemia were fourfold more likely to experience MACEs (hazard ratio, 4.14, 95% confidence interval 2.37 to 7.24, p 10%) by CMR was 0.29 (95% confidence interval 0.15 to 0.44), and continuous net reclassification improvement was 0.58. In conclusion, in patients with clinical suspicion of myocardial ischemia, regadenoson stress CMR MPI provides robust risk stratification. CMR MPI negative for ischemia was associated with a very low annual rate of hard cardiac events. In addition, CMR MPI provides effective risk reclassification in a substantial proportion of patients
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study
18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570