35 research outputs found

    Inhibition of angiotensin II-induced hypertrophy and cardiac dysfunction by North American ginseng (Panax quinquefolius)

    No full text
    We determined whether North American ginseng mitigates the effect of angiotensin II on hypertrophy and heart failure. Angiotensin II (0.3 mg/kg) was administered to rats for 2 or 4 weeks in the presence or absence of ginseng pretreatment. The effect of ginseng (10 μg/mL) on angiotensin II (100 nM) induced hypertrophy was also determined in neonatal rat ventricular myocytes. We also determined effects of ginseng on fatty acid and glucose oxidation by measuring gene and protein expression levels of key factors. Angiotensin II treatment for 2 and 4 weeks induced cardiac hypertrophy as evidenced by increased heart weights as well as the upregulation of the hypertrophy-related fetal gene expression levels with all effects being abolished by ginseng. Ginseng also reduced abnormalities in left ventricular function as well as the angiotensin-induced increased blood pressure. In myocytes, ginseng abolished the hypertrophic response to angiotensin II as assessed by surface area and gene expression of molecular markers of hypertrophy. Ginseng modulated angiotensin II-induced abnormalities in gene expression and protein levels of CD36, CPT1M, Glut4 and PDK4 in vivo and in vitro. In conclusion, ginseng suppresses angiotensin II induced cardiac hypertrophy and dysfunction which is related to normalization of fatty acid and glucose oxidation.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Ginseng ( Panax quinquefolius

    No full text

    Cardiomyocyte Antihypertrophic Effect of Adipose Tissue Conditioned Medium from Rats and Its Abrogation by Obesity is Mediated by the Leptin to Adiponectin Ratio.

    No full text
    White adipocytes are known to function as endocrine organs by secreting a plethora of bioactive adipokines which can regulate cardiac function including the development of hypertrophy. We determined whether adipose tissue conditioned medium (ATCM) generated from the epididymal regions of normal rats can affect the hypertrophic response of cultured rat ventricular myocytes to endothelin-1 (ET-1) administration. Myocytes were treated with ET-1 (10 nM) for 24 hours in the absence or presence of increasing ATCM concentrations. ATCM supressed the hypertrophic response to ET-1 in a concentration-dependent manner, an effect enhanced by the leptin receptor antagonist and attenuated by an antibody against the adiponectin AdipoR1 receptor. Antihypertrophic effects were also observed with ATCM generated from perirenal-derived adipose tissue. However, this effect was absent in ATCM from adipose tissue harvested from corpulent JCR:LA-cp rats. Detailed analyses of adipokine content in ATCM from normal and corpulent rats revealed no differences in the majority of products assayed, although a significant increase in leptin concentrations concomitant with decreased adiponectin levels was observed, resulting in a 11 fold increase in the leptin to adiponectin ratio in ATCM from JCR:LA-cp. The antihypertrophic effect of ATCM was associated with increased phosphorylation of AMP-activated protein kinase (AMPK), an effect abrogated by the AdipoR1 antibody. Moreover, the antihypertrophic effect of ATCM was mimicked by an AMPK activator. There was no effect of ET-1 on mitogen-activated protein kinase (MAPK) activities 24 hour after its addition either in the presence or absence of ATCM. Our study suggests that adipose tissue from healthy subjects exerts antihypertrophic effects via an adiponectin-dependent pathway which is impaired in obesity, most likely due to adipocyte remodelling resulting in enhanced leptin and reduced adiponectin levels

    Antihypertrophic Effect of Na +

    No full text

    North American ginseng (P. quinquefolius) suppresses β adrenergic-dependent signalling, hypertrophy and cardiac dysfunction

    No full text
    There is increasing evidence for a beneficial effect of ginseng on cardiac pathology. Here we determined whether North American ginseng can modulate the deleterious effects of the β-adrenoceptor agonist isoproterenol on cardiac hypertrophy and function using in vitro and in vivo approaches. Isoproterenol was administered for 2 weeks at either 25 mg/kg/day or 50 mg/kg/day (ISO25 or ISO50) via a subcutaneously implanted osmotic mini-pump to either control rats or those receiving ginseng (0.9 g/L in the drinking water ad libitum). Isoproterenol produced time- and dose-dependent left ventricular dysfunction although these effects were attenuated by ginseng. Improved cardiac functions were associated with reduced heart weights as well as prevention in the upregulation of the hypertrophy-related fetal gene expression. Lung weights were similarly attenuated suggesting reduced pulmonary congestion. In in vitro studies, ginseng (10 Οg/ml) completely suppressed the hypertrophic response to 1 ΟM isoproterenol in terms of myocyte surface area as well as reduction in the upregulation of fetal gene expression. These effects were associated with attenuation in both protein kinase A and cAMP response element-binding protein phosphorylation. Ginseng attenuates adverse cardiac adrenergic responses and may therefore be an effective therapy to reduce hypertrophy and heart failure associated with excessive catecholamine production.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore