209 research outputs found
Analysis of vibration based windmill coupled micromachined energy harvester
The present work exploits the centripetal, Coriolis and Euler forces generated in a rotating windmill. The MEMS device is placed on the blade of a windmill to harvest the energy. Modal analysis is carried out to optimize the dimensions of the structure to match the desired conditions. The real time response of the structure and the voltage generated in the piezoelectric layer are evaluated using transient analysis. It was noticed that Euler and Coriolis forces have a significant contribution in the initial time when the wind turbine accelerates from rest. The later portion is dominated by the Coriolis and Euler forces, and in some instances they cancel out each other. However, there is always a steady contribution from the centripetal force which is proportional to the magnitude of angular velocity of the wind turbine
Synthesis of organized inorganic crystal assemblies
Organized crystalline assemblies of cobalt salt and g-iron oxide have been produced by in situ matrixmediated biomimetic route. The process makes use of an organized supramolecular matrix and produces cobalt chloride crystals with characteristic morphology of coccolith of alga and nacreous structure of Pinctada martensii. Crystals of g-iron oxide have been produced with typical morphology of aragonite spherulites in regenerated shell of Pomaceae paludosa
Impact of Sequencing Targeted Therapies With High-dose Interleukin-2 Immunotherapy: An Analysis of Outcome and Survival of Patients With Metastatic Renal Cell Carcinoma From an On-going Observational IL-2 Clinical Trial: PROCLAIM
BACKGROUND: This analysis describes the outcome for patients who received targeted therapy (TT) prior to or following high-dose interleukin-2 (HD IL-2).
PATIENTS AND METHODS: Patients with renal cell carcinoma (n = 352) receiving HD IL-2 were enrolled in Proleukin
RESULTS: Overall, there were 4% complete response (CR), 13% partial response (PR), 39% stable disease (SD), and 43% progressive disease (PD) with HD IL-2. The median overall survival (mOS) was not reached in patients with CR, PR, or SD, and was 15.5 months in patients with PD (median follow-up, 21 months). Sixty-one patients had prior TT before HD IL-2 with an overall response rate (ORR) to HD IL-2 of 19% (1 CR, 9 PR) and an mOS of 22.1 months. One hundred forty-nine patients received TT only after HD IL-2 with an mOS of 35.5 months. One hundred forty-two patients had no TT before or after HD IL-2, and mOS was not reached. The mOS was 8.5 months in PD patients who received HD IL-2 without follow-on TT and 29.7 months in PD patients who received follow-on TT after HD IL-2.
CONCLUSIONS: HD IL-2 as sole front-line therapy, in the absence of added TT, shows extended clinical benefit (CR, PR, and SD). Patients with PD after HD IL-2 appear to benefit from follow-on TT. Patients who progressed on TT and received follow-on HD IL-2 experienced major clinical benefit. HD IL-2 therapy should be considered in eligible patients
Analysis of feedback loops and robustness in network evolution based on Boolean models
<p>Abstract</p> <p>Background</p> <p>Many biological networks such as protein-protein interaction networks, signaling networks, and metabolic networks have topological characteristics of a scale-free degree distribution. Preferential attachment has been considered as the most plausible evolutionary growth model to explain this topological property. Although various studies have been undertaken to investigate the structural characteristics of a network obtained using this growth model, its dynamical characteristics have received relatively less attention.</p> <p>Results</p> <p>In this paper, we focus on the robustness of a network that is acquired during its evolutionary process. Through simulations using Boolean network models, we found that preferential attachment increases the number of coupled feedback loops in the course of network evolution. Whereas, if networks evolve to have more coupled feedback loops rather than following preferential attachment, the resulting networks are more robust than those obtained through preferential attachment, although both of them have similar degree distributions.</p> <p>Conclusion</p> <p>The presented analysis demonstrates that coupled feedback loops may play an important role in network evolution to acquire robustness. The result also provides a hint as to why various biological networks have evolved to contain a number of coupled feedback loops.</p
Mesenchymal Stem Cells in Early Entry of Breast Cancer into Bone Marrow
BACKGROUND: An understanding of BC cell (BCC) entry into bone marrow (BM) at low tumor burden is limited when compared to highly metastatic events during heavy tumor burden. BCCs can achieve quiescence, without interfering with hematopoiesis. This occurs partly through the generation of gap junctions with BM stroma, located close to the endosteum. These events are partly mediated by the evolutionary conserved gene, Tac1. METHODOLOGY/PRINCIPAL FINDINGS: This study focuses on the role of mesenchymal stem cells (MSCs), Tac1, SDF-1 and CXCR4 in BCC entry into BM. The model is established in studies with low numbers of tumor cells, and focuses on cancer cells with low metastatic and invasion potential. This allowed us to recapitulate early event, and to study cancer cells with low invasive potential, even when they are part of larger numbers of highly metastatic cells. A novel migration assay showed a facilitating role of MSCs in BCC migration across BM endothelial cells. siRNA and ectopic expression studies showed a central role for Tac1 and secondary roles for SDF-1alpha and CXCR4. We also observed differences in the mechanisms between low invasive and highly metastatic cells. The in vitro studies were verified in xenogeneic mouse models that showed a preference for low invasive BCCs to BM, but comparable movement to lung and BM by highly metastatic BCCs. The expressions of Tac1 and production of SDF-1alpha were verified in primary BCCs from paired samples of BM aspirates and peripheral blood. CONCLUSIONS/SIGNIFICANCE: MSC facilitate BCC entry into BM, partly through Tac1-mediated regulation of SDF-1alpha and CXCR4. We propose a particular population of BCC with preference for BM could be isolated for characterization. This population might be the subset that enter BM at an early time period, and could be responsible for cancer resurgence and resistance to current therapies
Classification and nomenclature of all human homeobox genes
<p>Abstract</p> <p>Background</p> <p>The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.</p> <p>Results</p> <p>We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive <it>DUX1 </it>to <it>DUX5 </it>homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.</p> <p>Conclusion</p> <p>We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.</p
The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted
- …