342 research outputs found
Front Propagation of Spatio-temporal Chaos
We study the dynamics of the front separating a spatio-temporally chaotic
region from a stable steady region using a simple model applicable to
periodically forced systems. In particular, we investigate both the coarsening
of the front induced by the inherent `noise' of the chaotic region, and the
long wavelength dynamics causing the front to develop cusps
Defects and boundary layers in non-Euclidean plates
We investigate the behavior of non-Euclidean plates with constant negative
Gaussian curvature using the F\"oppl-von K\'arm\'an reduced theory of
elasticity. Motivated by recent experimental results, we focus on annuli with a
periodic profile. We prove rigorous upper and lower bounds for the elastic
energy that scales like the thickness squared. In particular we show that are
only two types of global minimizers -- deformations that remain flat and saddle
shaped deformations with isolated regions of stretching near the edge of the
annulus. We also show that there exist local minimizers with a periodic profile
that have additional boundary layers near their lines of inflection. These
additional boundary layers are a new phenomenon in thin elastic sheets and are
necessary to regularize jump discontinuities in the azimuthal curvature across
lines of inflection. We rigorously derive scaling laws for the width of these
boundary layers as a function of the thickness of the sheet
Trapping of Vibrational Energy in Crumpled Sheets
We investigate the propagation of transverse elastic waves in crumpled media.
We set up the wave equation for transverse waves on a generic curved, strained
surface via a Langrangian formalism and use this to study the scaling behaviour
of the dispersion curves near the ridges and on the flat facets. This analysis
suggests that ridges act as barriers to wave propagation and that modes in a
certain frequency regime could be trapped in the facets. A simulation study of
the wave propagation qualitatively supported our analysis and showed
interesting effects of the ridges on wave propagation.Comment: RevTex 12 pages, 7 figures, Submitted to PR
Temperature scaling in a dense vibro-fluidised granular material
The leading order "temperature" of a dense two dimensional granular material
fluidised by external vibrations is determined. An asymptotic solution is
obtained where the particles are considered to be elastic in the leading
approximation. The velocity distribution is a Maxwell-Boltzmann distribution in
the leading approximation. The density profile is determined by solving the
momentum balance equation in the vertical direction, where the relation between
the pressure and density is provided by the virial equation of state. The
predictions of the present analysis show good agreement with simulation results
at higher densities where theories for a dilute vibrated granular material,
with the pressure-density relation provided by the ideal gas law, are in error.
The theory also predicts the scaling relations of the total dissipation in the
bed reported by McNamara and Luding (PRE v 58, p 813).Comment: ReVTeX (psfrag), 5 pages, 5 figures, Submitted to PR
Universal Scaling Properties in Large Assemblies of Simple Dynamical Units Driven by Long-Wave Random Forcing
Large assemblies of nonlinear dynamical units driven by a long-wave
fluctuating external field are found to generate strong turbulence with scaling
properties. This type of turbulence is so robust that it persists over a finite
parameter range with parameter-dependent exponents of singularity, and is
insensitive to the specific nature of the dynamical units involved. Whether or
not the units are coupled with their neighborhood is also unimportant. It is
discovered numerically that the derivative of the field exhibits strong spatial
intermittency with multifractal structure.Comment: 10 pages, 7 figures, submitted to PR
Stigma as a fundamental hindrance to the United States opioid overdose crisis response.
Alexander Tsai and co-authors discuss the role of stigma in responses to the US opioid crisis
Affirmative Action Bans and Health Risk Behaviors
College affirmative action bans were associated with higher rates of smoking and drinking in underrepresented minority 11th and 12th graders, and these students continued to smoke at higher rates into young adulthood. Policymakers should consider unintended public health consequences of proposals, such as affirmative action bans, that may limit socioeconomic opportunities
Steady Stokes flow with long-range correlations, fractal Fourier spectrum, and anomalous transport
We consider viscous two-dimensional steady flows of incompressible fluids
past doubly periodic arrays of solid obstacles. In a class of such flows, the
autocorrelations for the Lagrangian observables decay in accordance with the
power law, and the Fourier spectrum is neither discrete nor absolutely
continuous. We demonstrate that spreading of the droplet of tracers in such
flows is anomalously fast. Since the flow is equivalent to the integrable
Hamiltonian system with 1 degree of freedom, this provides an example of
integrable dynamics with long-range correlations, fractal power spectrum, and
anomalous transport properties.Comment: 4 pages, 4 figures, published in Physical Review Letter
- …