70 research outputs found

    Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system

    Full text link
    Noise driven electroconvection in sandwich cells of nematic liquid crystals exhibits on-off intermittent behaviour at the onset of the instability. We study laser scattering of convection rolls to characterize the wavelengths and the trajectories of the stochastic amplitudes of the intermittent structures. The pattern wavelengths and the statistics of these trajectories are in quantitative agreement with simulations of the linearized electrohydrodynamic equations. The fundamental τ3/2\tau^{-3/2} distribution law for the durations τ\tau of laminar phases as well as the power law of the amplitude distribution of intermittent bursts are confirmed in the experiments. Power spectral densities of the experimental and numerically simulated trajectories are discussed.Comment: 20 pages and 17 figure

    Controlled Dynamics of Interfaces in a Vibrated Granular Layer

    Full text link
    We present experimental study of a topological excitation, {\it interface}, in a vertically vibrated layer of granular material. We show that these interfaces, separating regions of granular material oscillation with opposite phases, can be shifted and controlled by a very small amount of an additional subharmonic signal, mixed with the harmonic driving signal. The speed and the direction of interface motion depends sensitively on the phase and the amplitude of the subharmonic driving.Comment: 4 pages, 6 figures, RevTe

    The Energy Landscapes of Repeat-Containing Proteins: Topology, Cooperativity, and the Folding Funnels of One-Dimensional Architectures

    Get PDF
    Repeat-proteins are made up of near repetitions of 20– to 40–amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi–one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete “domain” (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (ΔGwater) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the “coarse-grained” description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are “poised” at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions

    Increased risk of severe clinical course of COVID-19 in carriers of HLA-C*04:01

    Get PDF
    BACKGROUND: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing urgency to identify pathophysiological characteristics leading to severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors that affect individual immune response to SARS-CoV-2. We sought to evaluate this hypothesis by conducting a multicenter study using HLA sequencing. METHODS: We analyzed the association between COVID-19 severity and HLAs in 435 individuals from Germany ((n) = 135), Spain ((n) = 133), Switzerland ((n) = 20) and the United States ((n) = 147), who had been enrolled from March 2020 to August 2020. This study included patients older than 18 years, diagnosed with COVID-19 and representing the full spectrum of the disease. Finally, we tested our results by meta-analysing data from prior genome-wide association studies (GWAS). FINDINGS: We describe a potential association of HLA-C*04:01 with severe clinical course of COVID-19. Carriers of HLA-C*04:01 had twice the risk of intubation when infected with SARS-CoV-2 (risk ratio 1.5 [95% CI 1.1-2.1], odds ratio 3.5 [95% CI 1.9-6.6], adjusted (p)-value = 0.0074). These findings are based on data from four countries and corroborated by independent results from GWAS. Our findings are biologically plausible, as HLA-C*04:01 has fewer predicted bindings sites for relevant SARS-CoV-2 peptides compared to other HLA alleles. INTERPRETATION: HLA-C*04:01 carrier state is associated with severe clinical course in SARS-CoV-2. Our findings suggest that HLA class I alleles have a relevant role in immune defense against SARS-CoV-2

    Socioeconomic mobility and talent utilization of workers from poorer backgrounds: The overlooked importance of within-organization dynamics

    Get PDF
    Socioeconomic mobility, or the ability of individuals to improve their socioeconomic standing through merit-based contributions, is a fundamental ideal of modern societies. The key focus of societal efforts to ensure socioeconomic mobility has been on the provision of educational opportunities. We review evidence that even with the same education and job opportunities, being born into a poorer family undermines socioeconomic mobility due to processes occurring within organizations. The burden of poorer background might, ceteris paribus, be economically comparable to the gender gap. We argue that in the societal and scientific effort to promote socioeconomic mobility, the key context in which mobility is supposed to happen—organizations—as well as the key part of the life of people striving toward socioeconomic advancement—that as working adults—have been overlooked. We integrate the organizational literature pointing to key within-organizational processes impacting objective (socioeconomic) success with research, some emergent in organizational sciences and some disciplinary, on when, why, and how people from poorer backgrounds behave or are treated by others in the relevant situations. Integrating these literatures generates a novel and useful framework for identifying issues people born into poorer families face as employees, systematizes extant evidence and makes it more accessible to organizational scientists, and allows us to lay the agenda for future organizational scholarshi

    Solar system astronomy with the 3.6-m DOT and the 4-m ILMT

    No full text
    Solar system astronomy would be an important field of study with the 3.6-m Devasthal Optical Telescope (DOT) and the 4-m International Liquid Mirror Telescope (ILMT). In this contribution, we highlight the work that could be done in reaching a better understanding of the Solar system and its constituents - particularly the minor bodies and other smaller objects. There may be a large number of very faint objects in the vicinity of the Earth orbit. In fact only recently a "second moon" of the Earth has been found and has been designated 2016 HO3. This is a quasi-satellite with the same period of revolution around Earth and Sun. There could be many such objects and it is important to have a full characterization and understanding of these potentially hazardous objects. They are generally fainter than 18th magnitude and one would need a lot of telescope time to fully characterize these objects using techniques of spectropolarimetry. In a similar fashion, a deep census of the Kuiper Belt Objects and the TNOs is needed. In this census, the concept of pencil beam surveys could be extended to cylindrical transit imaging technique available with the 4-m ILMT.by Shashikiran Ganesh, Kumar Venkataramani, Kiran Singh Baliyan and Umesh Chandra Josh

    Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites

    No full text
    The observation and theory of a large remanent magnetoelectric (ME) coefficient and coercivity in the static field H dependence of the low-frequency ME effects are reported for bilayers of lead zirconate titanate (PZT) and a functionally graded ferromagnetic layer. The grading involves magnetization with the use of nickel zinc ferrite of composition Ni0.7Zn0.3Fe2O4 (NZFO) and pure Ni. In homogeneous bilayers of PZT-Ni or PZT-NZFO, the ME voltage coefficient (MEVC) vs H data do not show any hysteresis or remanence. Upon grading the ferromagnetic layer, significant changes including hysteresis and remanece are observed. In PZT-Ni-NZFO, MEVC vs H data show a positive remnant MEVC and a negative coercive field. When the grading is reversed, in samples of PZT-NZFO-Ni, the remnant MEVC is negative and the coercive field is positive. A theory is proposed for the low-frequency ME effects in the graded composites. According to the model, the grading in the magnetization leads to a built-in magnetic field in the ferromagnetic layer, and this field depends on the sequence of grading and the thickness of the NZFO and Ni layers. As a result, the total torque moment and flexural deformations in the composite and the bias field dependence of ME voltage coefficient becomes strongly hysteretic. Calculated MEVC vs H, remnant MEVC, and coercive field are in good agreement with the data

    Time and phase resolved optical spectra of potentially hazardous asteroid 2014 JO25

    No full text
    The asteroid 2014 JO25, considered to be "potentially hazardous" by the Minor Planet Center, was spectroscopically followed during its close-Earth encounter on 19th and 20th of April 2017. The spectra of the asteroid were taken with the low resolution spectrograph (LISA), mounted on the 1.2-m telescope at the Mount Abu Infrared Observatory, India. Coming from a region close to the Hungaria population of asteroids, this asteroid follows a comet-like orbit with a relatively high inclination and large eccentricity. Hence, we carried out optical spectroscopic observations of the asteroid to look for comet-like molecular emissions or outbursts. However, the asteroid showed a featureless spectrum, devoid of any comet-like features. The asteroid's light curve was analyzed using V band magnitudes derived from the spectra and the most likely solution for the rotation of the asteroid was obtained. The absolute magnitude H and the slope parameter G were determined for the asteroid in V filter band using the IAU accepted standard two parameter H-G model. A peculiar, rarely found result from these observations is its phase bluing trend. The relative B-V color index seems to decrease with increasing phase angle, which indicates a phase bluing trend. Such trends have seldom been reported in literature. However, phase reddening in asteroids is very common. The asymmetry parameter g and the single scattering albedo w were estimated for the asteroid by fitting the Hapke phase function to the observed data. The asteroid shows relatively large value for the single scattering albedo and a highly back scattering surface.by Venkataramani Kumar, Ganesh Shashikiran , Archita Rai, Marek Husárik, K. S.Baliyan and U.C. Josh

    Optical spectroscopy of comet C/2014 Q2 (Lovejoy) from MIRO

    No full text
    Spectra of comet C/2014 Q2 (Lovejoy) were taken with a low resolution spectrograph mounted on the 0.5 m telescope at the Mount Abu Infrared Observatory (MIRO), India during January to May 2015 covering the perihelion and post-perihelion periods. The spectra showed strong molecular emission bands (C2, C3 and CN) in January, close to perihelion. We have obtained the scale lengths for these molecules by fitting the Haser model to the observed column densities. The variation of gas production rates and production rate ratios with heliocentric distance were studied. The extent of the dust continuum using the Af-rho parameter and its variation with the heliocentric distance were also investigated. The comet is seen to become more active in the post-perihelion phase, thereby showing an asymmetric behaviour about the perihelion.by Kumar Venkataramani, Satyesh Ghetiya, Shashikiran Ganesh, U.C.Joshi, Vikrant K. Agnihotri and K.S.Baliya
    corecore