7 research outputs found

    Identification of critical residues in loop E in the 5-HT(3AS)R binding site

    Get PDF
    BACKGROUND: The serotonin type 3 receptor (5-HT(3)R) is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family. RESULTS: Thirteen amino acids in the mouse 5-HT(3AS)R that correspond to the putative E binding loop of the nicotinic α7 receptor were chosen for mutagenesis. Due to the presence of a highly conserved glycine in this region, it has been suggested that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family. Mutation of the conserved glycine (G147) to alanine eliminated binding of the 5-HT(3)R antagonist [(3)H]granisetron. Three tyrosine residues (Y140, Y142 and Y152) also significantly altered the binding of 5-HT(3)R ligands. Mutations in neighboring residues had little or no effect on binding of these ligands to the 5-HT(3AS)R. CONCLUSION: Our data supports a role for the putative E-loop region of the 5-HT(3)R in the binding of 5-HT, mCPBG, d-tc and lerisetron. 5-HT and mCPBG interact with Y142, d-tc with Y140 and lerisetron with both Y142 and Y152. Our data also provides support for the hypothesis that this region of the receptor is present in a loop structure

    Functional group interactions of a 5-HT3R antagonist

    Get PDF
    Background: Lerisetron, a competitive serotonin type 3 receptor (5-HT 3R) antagonist, contains five functional groups capable of interacting with amino acids in the 5-HT3R binding site. Site directed mutagenesis studies of the 5-HT3AR have revealed several amino acids that are thought to form part of the binding domain of this receptor. The specific functional groups on the ligand that interact with these amino acids are, however, unknown. Using synthetic analogs of lerisetron as molecular probes in combination with site directed mutagenesis, we have identified some of these interactions and have proposed a model of the lerisetron binding site. Results: Two analogs of lerisetron were synthesized to probe 5-HT3R functional group interactions with this compound. Analog 1 lacks the N1 benzyl group of lerisetron and analog 2 contains oxygen in place of the distal piperazine nitrogen. Both analogs show significantly decreased binding affinity to wildtype 5-HT3ASRs. Mutations at W89, R91, Y142 and Y152 produced significant decreases in binding compared to wildtype receptors. Binding affinities of analogs 1 and 2 were altered only by mutations at W89, and Y152. Conclusions: Based on the data obtained for lerisetron and analogs 1 and 2, we have proposed a tentative model of the lerisetron binding pocket of the 5-HT3ASR. According to this model, The N-benzyl group interacts in a weak interaction with R91 while the benzimidazole group interacts with W89. Our data support an interaction of the distal amino nitrogen with Y142 and Y152

    Functional group interactions of a 5-HT(3)R antagonist

    Get PDF
    BACKGROUND: Lerisetron, a competitive serotonin type 3 receptor (5-HT(3)R) antagonist, contains five functional groups capable of interacting with amino acids in the 5-HT(3)R binding site. Site directed mutagenesis studies of the 5-HT(3A)R have revealed several amino acids that are thought to form part of the binding domain of this receptor. The specific functional groups on the ligand that interact with these amino acids are, however, unknown. Using synthetic analogs of lerisetron as molecular probes in combination with site directed mutagenesis, we have identified some of these interactions and have proposed a model of the lerisetron binding site. RESULTS: Two analogs of lerisetron were synthesized to probe 5-HT(3)R functional group interactions with this compound. Analog 1 lacks the N1 benzyl group of lerisetron and analog 2 contains oxygen in place of the distal piperazine nitrogen. Both analogs show significantly decreased binding affinity to wildtype 5-HT(3AS)Rs. Mutations at W89, R91, Y142 and Y152 produced significant decreases in binding compared to wildtype receptors. Binding affinities of analogs 1 and 2 were altered only by mutations at W89, and Y152. CONCLUSIONS: Based on the data obtained for lerisetron and analogs 1 and 2, we have proposed a tentative model of the lerisetron binding pocket of the 5-HT(3AS)R. According to this model, The N-benzyl group interacts in a weak interaction with R91 while the benzimidazole group interacts with W89. Our data support an interaction of the distal amino nitrogen with Y142 and Y152
    corecore