2 research outputs found

    Monitoring slope instability integrating InSAR, GNSS, Total Station and Levelling: a case study in the Eastern slope of the Mt. Amiata volcanic complex, Italy

    Get PDF
    Landslides are considered one of the major hazards causing economic and human losses worldwide. Slope instability processes are affecting buildings and infrastructures in the towns of the eastern slope of the Mt. Amiata volcanic complex (Tuscany, Italy). These processes are relevant as they expose the inhabitants to risk, moreover their analysis provide hints about the mechanisms and roles of land sliding in the progressive disruption of extinct volcanic edifices. In this study we present the first results of some monitoring and multi-temporal systems which are integrated to investigate the spatial-temporal ground displacement field in the eastern slope of the Mt. Amiata volcanic complex. In detail, we combine InSAR, GNSS, robotic total stations (TS) and levelling techniques to obtain a framework in terms of planimetric and vertical displacements. We apply the Multi-Temporal InSAR approach from 2014 to 2021 using the ESA Copernicus Sentinel-1 data. To perform the interferometry analysis, we implement the single master Stanford Method for Persistent Scatterers (StaMPS) approach for both ascending and descending geometries, and by combining both Line of Sight (LOS) results, we reveal the vertical and E-W components of the displacement. In addition, we perform multi-temporal survey-style GNSS measurements for some tens stations from 2019 to present day. About one hundred reflectors are continuously monitored by TS. Additionally, multi-temporal geometric levelling is performed to assess the vertical movements of selected relevant benchmarks. Finally, results from different monitoring systems are combined to model the ground displacements. The InSAR results reveal mean velocity vectors with standard deviation less than 1 mm/y. The GNSS results have higher signal to noise ratio in the horizontal components with residuals lower than 10 mm. Accuracies of the geometrical levelling and TS results are ca. 1 mm and ca. 5 mm respectively. By combining the results, the magnitude of displacement field is ranging up to ca. 30 cm/y. The different systems provide results each other reasonably coherent in terms of magnitude and direction of the displacement vector. Integration of systems allows us to get solutions where one or more systems fail to provide data (i.e., when few or no PS are obtained by InSAR). Finally, we compare the results with seasonal data like rainfall. Velocities tend to reduce during summer low precipitation periods, while they increase during winter. Long term quantitative monitoring activities will allow us to better understand the spatial-temporal evolution of the landslide processes in the perspective of developing an early warning system

    Dismantling a volcanic edifice by deep-seated landslides: the case of the eastern Monte Amiata (Italy)

    Get PDF
    The Monte Amiata is a volcano located in central Italy composed by trachytic to olivine latitic lava flows and domes emplaced between 305 and 231 ka (Pleistocene). These volcanic products, affected by saprolite alteration processes of spatially variable intensity, unconformably overlie Pliocene marine clayey sediments, as well as the Ligurian units stacked during the Northern Apennines orogeny. The Monte Amiata area has been attracting much attention from research and industry because of its economic importance in the field of geothermal energy, ore deposits and groundwater supply, hence a quite detailed geologic framework is available for this area. Instead, less efforts were made toward the understanding of the widespread gravitational processes affecting the eastern side of the volcanic edifice, often involving the transition between the volcanic rocks and the underlying sedimentary units, where many natural springs arise. The main urban agglomerations developed in this geologic setting, so buildings and infrastructures have been suffering damages caused by landslide processes over large areas. In this context, remote sensing imagery analysis, geomorphological surveys, engineering geology sub-surface investigations and ground displacement monitoring by integrating GNSS, robotic total station and geometric levelling allow us to map the main geomorphological features and infer the geometry and displacement rates of landslides occurring in the eastern side of the Monte Amiata volcano. The results suggest the occurrence of complex gravitational processes with different kinematic characteristics, state of activity and depth of the rupture surfaces. By cross-referencing the new quantitative data collected with the geomorphological evidences and the existing literature, we propose a model for the progressive dismantling of the eastern slopes of the Monte Amiata volcano caused by the interaction among complex gravitational movements affecting, at different structural levels, both the sedimentary units and the volcanic rocks. Moreover, detailed mapping of the saprolite derived by weathering of lava flows is provided and contextualised in the post-volcanic evolution of the Monte Amiata volcano
    corecore