15 research outputs found

    Linking the gut microbiome to microglial activation in opioid use disorder

    Get PDF
    Substance use disorder (SUD) is a physical and psychological disorder globally prevalent today that has resulted in over 107,000 drug overdose deaths in 2021 in the United States alone. This manuscript reviews the potential relationship between opioid use disorder (OUD), a prevalent subset of SUD, and the microglia, the resident macrophages of the central nervous system (CNS), as they have been found to become significantly more activated during opioid exposure. The inflammatory response mediated by the microglia could contribute to the pathophysiology of SUDs, in particular OUD. Further understanding of the microglia and how they respond to not only signals in the CNS but also signals from other areas of the body, such as the gut microbiome, could explain how the microglia are involved in drug use. Several studies have shown extensive communication between the gut microbiome and the microglia, which may be an important factor in the initiation and development of OUD. Particularly, strategies seeking to manipulate and restore the gut microbiome have been shown to reduce microglial activation and attenuate inflammation. In this review, we discuss the evidence for a link between the microglia and OUD and how the gut microbiome might influence microglial activation to drive the disorder and its associated behaviors. Understanding this connection between microglia and the gut microbiome in the context of drug use may present additional therapeutic targets to treat the different stages of drug use

    Linking the gut microbiome to microglial activation in opioid use disorder.

    No full text
    Substance use disorder (SUD) is a physical and psychological disorder globally prevalent today that has resulted in over 107,000 drug overdose deaths in 2021 in the United States alone. This manuscript reviews the potential relationship between opioid use disorder (OUD), a prevalent subset of SUD, and the microglia, the resident macrophages of the central nervous system (CNS), as they have been found to become significantly more activated during opioid exposure. The inflammatory response mediated by the microglia could contribute to the pathophysiology of SUDs, in particular OUD. Further understanding of the microglia and how they respond to not only signals in the CNS but also signals from other areas of the body, such as the gut microbiome, could explain how the microglia are involved in drug use. Several studies have shown extensive communication between the gut microbiome and the microglia, which may be an important factor in the initiation and development of OUD. Particularly, strategies seeking to manipulate and restore the gut microbiome have been shown to reduce microglial activation and attenuate inflammation. In this review, we discuss the evidence for a link between the microglia and OUD and how the gut microbiome might influence microglial activation to drive the disorder and its associated behaviors. Understanding this connection between microglia and the gut microbiome in the context of drug use may present additional therapeutic targets to treat the different stages of drug use

    The gut microbiome contributes to somatic morphine withdrawal behavior and implicates a TLR2 mediated mechanism

    No full text
    ABSTRACTThe ongoing opioid epidemic has left millions of people suffering from opioid use disorder due to the over-prescription of highly addictive substances. Chronic opioid exposure leads to dependence, where the absence of the drug results in negative symptoms of withdrawal, often driving patients to continue drug use; however, few therapeutic strategies are currently available to combat the cycle of addiction and the severity of morphine withdrawal. This study investigates the microbiome as a potential therapeutic target for morphine withdrawal, as gut dysbiosis caused by morphine use has been proven to contribute to other aspects of opioid use disorders, such as tolerance. Results show that although the microbiome during morphine withdrawal trends toward recovery from morphine-induced dysbiosis, there continues to be a disruption in the alpha and beta diversity as well as the abundance of gram-positive bacteria that may still contribute to the severity of morphine withdrawal symptoms. Germ-free mice lacking the microbiome did not develop somatic withdrawal symptoms, indicating that the microbiome is necessary for the development of somatic withdrawal behavior. Notably, only TLR2 but not TLR4 whole-body knockout models display less withdrawal severity, implicating that the microbiome, through a gram-positive, TLR2 mediated mechanism, drives opioid-induced somatic withdrawal behavior
    corecore