62 research outputs found

    EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices

    Full text link
    In recent years, advances in deep learning have resulted in unprecedented leaps in diverse tasks spanning from speech and object recognition to context awareness and health monitoring. As a result, an increasing number of AI-enabled applications are being developed targeting ubiquitous and mobile devices. While deep neural networks (DNNs) are getting bigger and more complex, they also impose a heavy computational and energy burden on the host devices, which has led to the integration of various specialized processors in commodity devices. Given the broad range of competing DNN architectures and the heterogeneity of the target hardware, there is an emerging need to understand the compatibility between DNN-platform pairs and the expected performance benefits on each platform. This work attempts to demystify this landscape by systematically evaluating a collection of state-of-the-art DNNs on a wide variety of commodity devices. In this respect, we identify potential bottlenecks in each architecture and provide important guidelines that can assist the community in the co-design of more efficient DNNs and accelerators.Comment: Accepted at MobiSys 2019: 3rd International Workshop on Embedded and Mobile Deep Learning (EMDL), 201

    Multi-Exit Semantic Segmentation Networks

    Full text link
    Semantic segmentation arises as the backbone of many vision systems, spanning from self-driving cars and robot navigation to augmented reality and teleconferencing. Frequently operating under stringent latency constraints within a limited resource envelope, optimising for efficient execution becomes important. At the same time, the heterogeneous capabilities of the target platforms and the diverse constraints of different applications require the design and training of multiple target-specific segmentation models, leading to excessive maintenance costs. To this end, we propose a framework for converting state-of-the-art segmentation CNNs to Multi-Exit Semantic Segmentation (MESS) networks: specially trained models that employ parametrised early exits along their depth to i) dynamically save computation during inference on easier samples and ii) save training and maintenance cost by offering a post-training customisable speed-accuracy trade-off. Designing and training such networks naively can hurt performance. Thus, we propose a novel two-staged training scheme for multi-exit networks. Furthermore, the parametrisation of MESS enables co-optimising the number, placement and architecture of the attached segmentation heads along with the exit policy, upon deployment via exhaustive search in <1 GPUh. This allows MESS to rapidly adapt to the device capabilities and application requirements for each target use-case, offering a train-once-deploy-everywhere solution. MESS variants achieve latency gains of up to 2.83x with the same accuracy, or 5.33 pp higher accuracy for the same computational budget, compared to the original backbone network. Lastly, MESS delivers orders of magnitude faster architectural customisation, compared to state-of-the-art techniques.Comment: (Extended version) Accepted at ECCV 202

    LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms

    Full text link
    Continual Learning (CL) allows applications such as user personalization and household robots to learn on the fly and adapt to context. This is an important feature when context, actions, and users change. However, enabling CL on resource-constrained embedded systems is challenging due to the limited labeled data, memory, and computing capacity. In this paper, we propose LifeLearner, a hardware-aware meta continual learning system that drastically optimizes system resources (lower memory, latency, energy consumption) while ensuring high accuracy. Specifically, we (1) exploit meta-learning and rehearsal strategies to explicitly cope with data scarcity issues and ensure high accuracy, (2) effectively combine lossless and lossy compression to significantly reduce the resource requirements of CL and rehearsal samples, and (3) developed hardware-aware system on embedded and IoT platforms considering the hardware characteristics. As a result, LifeLearner achieves near-optimal CL performance, falling short by only 2.8% on accuracy compared to an Oracle baseline. With respect to the state-of-the-art (SOTA) Meta CL method, LifeLearner drastically reduces the memory footprint (by 178.7x), end-to-end latency by 80.8-94.2%, and energy consumption by 80.9-94.2%. In addition, we successfully deployed LifeLearner on two edge devices and a microcontroller unit, thereby enabling efficient CL on resource-constrained platforms where it would be impractical to run SOTA methods and the far-reaching deployment of adaptable CL in a ubiquitous manner. Code is available at https://github.com/theyoungkwon/LifeLearner.Comment: Accepted for publication at SenSys 202

    Meta-Learned Kernel For Blind Super-Resolution Kernel Estimation

    Full text link
    Recent image degradation estimation methods have enabled single-image super-resolution (SR) approaches to better upsample real-world images. Among these methods, explicit kernel estimation approaches have demonstrated unprecedented performance at handling unknown degradations. Nonetheless, a number of limitations constrain their efficacy when used by downstream SR models. Specifically, this family of methods yields i) excessive inference time due to long per-image adaptation times and ii) inferior image fidelity due to kernel mismatch. In this work, we introduce a learning-to-learn approach that meta-learns from the information contained in a distribution of images, thereby enabling significantly faster adaptation to new images with substantially improved performance in both kernel estimation and image fidelity. Specifically, we meta-train a kernel-generating GAN, named MetaKernelGAN, on a range of tasks, such that when a new image is presented, the generator starts from an informed kernel estimate and the discriminator starts with a strong capability to distinguish between patch distributions. Compared with state-of-the-art methods, our experiments show that MetaKernelGAN better estimates the magnitude and covariance of the kernel, leading to state-of-the-art blind SR results within a similar computational regime when combined with a non-blind SR model. Through supervised learning of an unsupervised learner, our method maintains the generalizability of the unsupervised learner, improves the optimization stability of kernel estimation, and hence image adaptation, and leads to a faster inference with a speedup between 14.24 to 102.1x over existing methods.Comment: Preprint: Accepted at the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024

    Dual practice in the health sector: review of the evidence

    Get PDF
    This paper reports on income generation practices among civil servants in the health sector, with a particular emphasis on dual practice. It first approaches the subject of public–private overlap. Thereafter it focuses on coping strategies in general and then on dual practice in particular. To compensate for unrealistically low salaries, health workers rely on individual coping strategies. Many clinicians combine salaried, public-sector clinical work with a fee-for-service private clientele. This dual practice is often a means by which health workers try to meet their survival needs, reflecting the inability of health ministries to ensure adequate salaries and working conditions. Dual practice may be considered present in most countries, if not all. Nevertheless, there is surprisingly little hard evidence about the extent to which health workers resort to dual practice, about the balance of economic and other motives for doing so, or about the consequences for the proper use of the scarce public resources dedicated to health. In this paper dual practice is approached from six different perspectives: (1) conceptual, regarding what is meant by dual practice; (2) descriptive, trying to develop a typology of dual practices; (3) quantitative, trying to determine its prevalence; (4) impact on personal income, the health care system and health status; (5) qualitative, looking at the reasons why practitioners so frequently remain in public practice while also working in the private sector and at contextual, personal life, institutional and professional factors that make it easier or more difficult to have dual practices; and (6) possible interventions to deal with dual practice
    • …
    corecore