152 research outputs found
MultiTASC: A Multi-Tenancy-Aware Scheduler for Cascaded DNN Inference at the Consumer Edge
Cascade systems comprise a two-model sequence, with a lightweight model
processing all samples and a heavier, higher-accuracy model conditionally
refining harder samples to improve accuracy. By placing the light model on the
device side and the heavy model on a server, model cascades constitute a widely
used distributed inference approach. With the rapid expansion of intelligent
indoor environments, such as smart homes, the new setting of Multi-Device
Cascade is emerging where multiple and diverse devices are to simultaneously
use a shared heavy model on the same server, typically located within or close
to the consumer environment. This work presents MultiTASC, a
multi-tenancy-aware scheduler that adaptively controls the forwarding decision
functions of the devices in order to maximize the system throughput, while
sustaining high accuracy and low latency. By explicitly considering device
heterogeneity, our scheduler improves the latency service-level objective (SLO)
satisfaction rate by 20-25 percentage points (pp) over state-of-the-art cascade
methods in highly heterogeneous setups, while serving over 40 devices,
showcasing its scalability.Comment: Accepted at 28th IEEE Symposium on Computers and Communications
(ISCC), 202
Exploring the Performance and Efficiency of Transformer Models for NLP on Mobile Devices
Deep learning (DL) is characterised by its dynamic nature, with new deep
neural network (DNN) architectures and approaches emerging every few years,
driving the field's advancement. At the same time, the ever-increasing use of
mobile devices (MDs) has resulted in a surge of DNN-based mobile applications.
Although traditional architectures, like CNNs and RNNs, have been successfully
integrated into MDs, this is not the case for Transformers, a relatively new
model family that has achieved new levels of accuracy across AI tasks, but
poses significant computational challenges. In this work, we aim to make steps
towards bridging this gap by examining the current state of Transformers'
on-device execution. To this end, we construct a benchmark of representative
models and thoroughly evaluate their performance across MDs with different
computational capabilities. Our experimental results show that Transformers are
not accelerator-friendly and indicate the need for software and hardware
optimisations to achieve efficient deployment.Comment: Accepted at the 3rd IEEE International Workshop on Distributed
Intelligent Systems (DistInSys), 202
fpgaConvNet: A framework for mapping convolutional neural networks on FPGAs
Convolutional Neural Networks (ConvNets) are a powerful Deep Learning model, providing state-of-the-art accuracy to many emerging classification problems. However, ConvNet classification is a computationally heavy task, suffering from rapid complexity scaling. This paper presents fpgaConvNet, a novel domain-specific modelling framework together with an automated design methodology for the mapping of ConvNets onto reconfigurable FPGA-based platforms. By interpreting ConvNet classification as a streaming application, the proposed framework employs the Synchronous Dataflow (SDF) model of computation as its basis and proposes a set of transformations on the SDF graph that explore the performance-resource design space, while taking into account platform-specific resource constraints. A comparison with existing ConvNet FPGA works shows that the proposed fully-automated methodology yields hardware designs that improve the performance density by up to 1.62× and reach up to 90.75% of the raw performance of architectures that are hand-tuned for particular ConvNets
A throughput-latency co-optimised cascade of convolutional neural network classifiers
Convolutional Neural Networks constitute a promi-nent AI model for classification tasks, serving a broad span ofdiverse application domains. To enable their efficient deploymentin real-world tasks, the inherent redundancy of CNNs is fre-quently exploited to eliminate unnecessary computational costs.Driven by the fact that not all inputs require the same amount ofcomputation to drive a confident prediction, multi-precision cas-cade classifiers have been recently introduced. FPGAs comprise apromising platform for the deployment of such input-dependentcomputation models, due to their enhanced customisation ca-pabilities. Current literature, however, is limited to throughput-optimised cascade implementations, employing large batching atthe expense of a substantial latency aggravation prohibiting theirdeployment on real-time scenarios. In this work, we introduce anovel methodology for throughput-latency co-optimised cascadedCNN classification, deployed on a custom FPGA architecturetailored to the target application and deployment platform,with respect to a set of user-specified requirements on accuracyand performance. Our experiments indicate that the proposedapproach achieves comparable throughput gains with relatedstate-of-the-art works, under substantially reduced overhead inlatency, enabling its deployment on latency-sensitive applications
Towards efficient on-board deployment of DNNs on intelligent autonomous systems
With their unprecedented performance in major AI tasks, deep neural networks (DNNs) have emerged as a primary building block in modern autonomous systems. Intelligent systems such as drones, mobile robots and driverless cars largely base their perception, planning and application-specific tasks on DNN models. Nevertheless, due to the nature of these applications, such systems require on-board local processing in order to retain their autonomy and meet latency and throughput constraints. In this respect, the large computational and memory demands of DNN workloads pose a significant barrier on their deployment on the resource-and power-constrained compute platforms that are available on-board. This paper presents an overview of recent methods and hardware architectures that address the system-level challenges of modern DNN-enabled autonomous systems at both the algorithmic and hardware design level. Spanning from latency-driven approximate computing techniques to high-throughput mixed-precision cascaded classifiers, the presented set of works paves the way for the on-board deployment of sophisticated DNN models on robots and autonomous systems
A parameterisable FPGA-tailored architecture for YOLOv3-Tiny
Object detection is the task of detecting the position of objects in an image or video as well as their corresponding class. The current state of the art approach that achieves the highest performance (i.e. fps) without significant penalty in accuracy of detection is the YOLO framework, and more specifically its latest version YOLOv3. When embedded systems are targeted for deployment, YOLOv3-tiny, a lightweight version of YOLOv3, is usually adopted. The presented work is the first to implement a parameterised FPGA-tailored architecture specifically for YOLOv3-tiny. The architecture is optimised for latency-sensitive applications, and is able to be deployed in low-end devices with stringent resource constraints. Experiments demonstrate that when a low-end FPGA device is targeted, the proposed architecture achieves a 290x improvement in latency, compared to the hard core processor of the device, achieving at the same time a reduction in mAP of 2.5 pp (30.9% vs 33.4%) compared to the original model. The presented work opens the way for low-latency object detection on low-end FPGA devices
Multi-Precision Policy Enforced Training (MuPPET): A precision-switching strategy for quantised fixed-point training of CNNs
Large-scale convolutional neural networks (CNNs) suffer from very long training times, spanning from hours to weeks, limiting the productivity and experimentation of deep learning practitioners. As networks grow in size and complexity, training time can be reduced through low-precision data representations and computations. However, in doing so the final accuracy suffers due to the problem of vanishing gradients. Existing state-of-the-art methods combat this issue by means of a mixed-precision approach utilising two different precision levels, FP32 (32-bit floating-point) and FP16/FP8 (16-/8-bit floating-point), leveraging the hardware support of recent GPU architectures for FP16 operations to obtain performance gains. This work pushes the boundary of quantised training by employing a multilevel optimisation approach that utilises multiple precisions including low-precision fixed-point representations. The novel training strategy, MuPPET, combines the use of multiple number representation regimes together with a precision-switching mechanism that decides at run time the transition point between precision regimes. Overall, the proposed strategy tailors the training process to the hardware-level capabilities of the target hardware architecture and yields improvements in training time and energy efficiency compared to state-of-the-art approaches. Applying MuPPET on the training of AlexNet, ResNet18 and GoogLeNet on ImageNet (ILSVRC12) and targeting an NVIDIA Turing GPU, MuPPET achieves the same accuracy as standard full-precision training with training-time speedup of up to 1.84 and an average speedup of 1.58 across the networks
Caffe barista: brewing caffe with FPGAs in the training loop
As the complexity of deep learning (DL) models increases, their compute requirements increase accordingly. Deploying a Convolutional Neural Network (CNN) involves two phases: training and inference. With the inference task typically taking place on resource-constrained devices, a lot of research has explored the field of low-power inference on custom hardware accelerators. On the other hand, training is both more compute- and memory-intensive and is primarily performed on power-hungry GPUs in large-scale data centres. CNN training on FPGAs is a nascent field of research. This is primarily due to the lack of tools to easily prototype and deploy various hardware and/or algorithmic techniques for power-efficient CNN training. This work presents Barista, an automated toolflow that provides seamless integration of FPGAs into the training of CNNs within the popular deep learning framework Caffe. To the best of our knowledge, this is the only tool that allows for such versatile and rapid deployment of hardware and algorithms for the FPGA-based training of CNNs, providing the necessary infrastructure for further research and development
- …