37 research outputs found
Pili in Probiotic Bacteria
The ability to adhere to intestinal epithelial tissue and mucosal surfaces is a key criterion in selecting probiotics. Adhesion is considered to be a prerequisite for successful colonization and survival in the gastrointestinal tract to provide persistent beneficial effects to the host. Bacteria express a multitude of surface components that mediate adherence. Pili or fimbriae are surface adhesive components implicated in initiating bacterial adhesion and mediating interaction with the host. These nonflagellar proteinaceous fiber appendages were identified and explored over several decades in pathogenic bacteria, and many distinct types are known. However, the presence of pili in probiotics and/or commensalic bacteria has only recently been recognized. Thus knowledge about pili in probiotics is relatively limited, but structural and functional data have begun to emerge. Availability of these data in the future would enable us to understand the pili-mediated adhesion strategies of probiotics. This knowledge could be utilized to develop antiadhesion-based therapies against bacterial infections as well as probiotic designs for beneficial effects. This chapter will briefly summarize the current knowledge of pili in probiotics with emphasis on members of lactobacilli and bifidobacteria
Bent conformation of a backbone pilin N-terminal domain supports a three-stage pilus assembly mechanism
Journal editors’ pick of their favorite papers from the first year of publishing.Peer reviewe
Crystallization and X-ray diffraction analysis of SpaE, a basal pilus protein from the gut-adapted Lactobacillus rhamnosus GG
SpaE is the predicted basal pilin subunit in the sortase-dependent SpaFED pilus from the gut-adapted and commensal Lactobacillus rhamnosus GG. Thus far, structural characterization of the cell-wall-anchoring basal pilins has remained difficult and has been limited to only a few examples from pathogenic genera and species. To gain a further structural understanding of the molecular mechanisms that are involved in the anchoring and assembly of sortase-dependent pili in less harmful bacteria, L. rhamnosus GG SpaE for crystallization was produced by recombinant expression in Escherichia coli. Although several attempts to crystallize the SpaE protein were unsuccessful, trigonal crystals that diffracted to a resolution of 3.1 angstrom were eventually produced using PEG 3350 as a precipitant and high protein concentrations. Further optimization with a combination of additives led to the generation of SpaE crystals in an orthorhombic form that diffracted to a higher resolution of 1.5 angstrom. To expedite structure determination by SAD phasing, selenium-substituted (orthorhombic) SpaE crystals were grown and X-ray diffraction data were collected to 1.8 angstrom resolution.Peer reviewe
Crystal structure of the atypically adhesive SpaB basal pilus subunit : Mechanistic insights about its incorporation in lactobacillar SpaCBA pili
To successfully colonize a host or environment, certain genera and species of Gram-positive bacteria have evolved to utilize the so-called sortase-dependent pilus, a long multi-subunit and non-flagellar surface adhesin. One example of this is Lactobacillus rhamnosus GG, a gut-adapted probiotic strain that produces SpaCBA pili. These structures are covalent hetero-oligomers built from three types of pilin subunit, each with a specific location and function (i.e., backbone SpaA for length, tip SpaC for adhesion, and basal SpaB for anchoring). Functionally, the SpaCBA pilus exhibits a promiscuous affinity for components on intestinal surfaces (e.g., mucus, collagen, and epithelial cells), which is largely attributed to the SpaC subunit. Then again, the basal SpaB pilin, in addition to acting as the terminal subunit during pilus assembly, displays an out of character mucoadhesive function. To address the structural basis of this unusual dual functionality, we reveal the 2.39 A resolution crystal structure of SpaB. SpaB consists of one immunoglobulin-like CnaB domain and contains a putative intermolecular isopeptide bond-linking lysine and internal isopeptide bond-asparagine in an FPKN pilin motif within the C-terminal end. Remarkably, we found that a C-terminal stretch of positively charged lysine and arginine residues likely accounts for the atypical mucoadhesiveness of SpaB. Although harboring an autocatalytic triad of residues for a potential internal isopeptide interaction, the SpaB crystal structure lacked the visible electron density for intact bond formation, yet its presence was subsequently confirmed by mass spectral analysis. Finally, we propose a structural model that captures the exclusive basal positioning of SpaB in the SpaCBA pilus.Peer reviewe
New insights about pilus formation in gut-adapted Lactobacillus rhamnosus GG from the crystal structure of the SpaA backbone-pilin subunit
Thus far, all solved structures of pilin-proteins comprising sortase-assembled pili are from pathogenic genera and species. Here, we present the first crystal structure of a pilin subunit (SpaA) from a nonpathogen host (Lactobacillus rhamnosus GG). SpaA consists of two tandem CnaB-type domains, each with an isopeptide bond and E-box motif. Intriguingly, while the isopeptide bond in the N-terminal domain forms between lysine and asparagine, the one in the C-terminal domain atypically involves aspartate. We also solved crystal structures of mutant proteins where residues implicated in forming isopeptide bonds were replaced. Expectedly, the E-box-substituted E139A mutant lacks an isopeptide bond in the N-terminal domain. However, the C-terminal E269A substitution gave two structures; one of both domains with their isopeptide bonds present, and another of only the N-terminal domain, but with an unformed isopeptide bond and significant conformational changes. This latter crystal structure has never been observed for any other Gram-positive pilin. Notably, the C-terminal isopeptide bond still forms in D295N-substituted SpaA, irrespective of E269 being present or absent. Although E-box mutations affect SpaA proteolytic and thermal stability, a cumulative effect perturbing normal pilus polymerization was unobserved. A model showing the polymerized arrangement of SpaA within the SpaCBA pilus is proposed.Peer reviewe
A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly
The Gram-positive organism Corynebacterium diphtheriae, the cause of diphtheria in humans, expresses pili on its surface which it uses for adhesion and colonization of its host. These pili are covalent protein polymers composed of three types of pilin subunit that are assembled by specific sortase enzymes. A structural analysis of the major pilin SpaD, which forms the polymeric backbone of one of the three types of pilus expressed by C. diphtheriae, is reported. Mass-spectral and crystallographic analysis shows that SpaD contains three internal Lys-Asn isopeptide bonds. One of these, shown by mass spectrometry to be located in the N-terminal D1 domain of the protein, only forms slowly, implying an energy barrier to bond formation. Two crystal structures, of the full-length three-domain protein at 2.5Å resolution and of a two-domain (D2-D3) construct at 1.87Å resolution, show that each of the three Ig-like domains contains a single Lys-Asn isopeptide-bond cross-link, assumed to give mechanical stability as in other such pili. Additional stabilizing features include a disulfide bond in the D3 domain and a calcium-binding loop in D2. The N-terminal D1 domain is more flexible than the others and, by analogy with other major pilins of this type, the slow formation of its isopeptide bond can be attributed to its location adjacent to the lysine used in sortase-mediated polymerization during pilus assembly.open0
Structure of the Full-Length Major Pilin from Streptococcus pneumoniae: Implications for Isopeptide Bond Formation in Gram-Positive Bacterial Pili
The surface of the pneumococcal cell is adorned with virulence factors including pili. The major pilin RrgB, which forms the pilus shaft on pathogenic Streptococcus pneumoniae, comprises four immunoglobulin (Ig)-like domains, each with a common CnaB topology. The three C-terminal domains are each stabilized by internal Lys-Asn isopeptide bonds, formed autocatalytically with the aid of an essential Glu residue. The structure and orientation of the crucial N-terminal domain, which provides the covalent linkage to the next pilin subunit in the shaft, however, remain incompletely characterised. We report the crystal structure of full length RrgB, solved by X-ray crystallography at 2.8 Å resolution. The N-terminal (D1) domain makes few contacts with the rest of the RrgB structure, and has higher B-factors. This may explain why D1 is readily lost by proteolysis, as are the N-terminal domains of many major pilins. D1 is also found to have a triad of Lys, Asn and Glu residues in the same topological positions as in the other domains, yet mass spectrometry and the crystal structure show that no internal isopeptide bond is formed. We show that this is because β-strand G of D1, which carries the Asn residue, diverges from β-strand A, carrying the Lys residue, such that these residues are too far apart for bond formation. Strand G also carries the YPKN motif that provides the essential Lys residue for the sortase-mediated intermolecular linkages along the pilus shaft. Interaction with the sortase and formation of the intermolecular linkage could result in a change in the orientation of this strand, explaining why isopeptide bond formation in the N-terminal domains of some major pilins appears to take place only upon assembly of the pili
Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1
The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a ‘lid’ in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the ‘lid’ mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis