14 research outputs found

    Experimental investigation and statistical analysis of surface roughness parameters in milling of PA66-GF30 glass-fibre reinforced polyamide

    Get PDF
    A multi-parameter analysis of surface finish imparted to PA66-GF30 glass-fibre reinforced polyamide by milling is presented. The interrelationship between surface texture parameters is emphasized. Surface finish parameters studied include arithmetic mean deviation of the assessed profile Ra; maximum height of profile, Rt; ten point height Rz; mean width of the profile elements Rsm; skewness of the assessed profile, Rsk and kurtosis of the assessed profile, Rku. The correlation of these parameters with the machining conditions was investigated. By applying analysis of variance and regression analysis to the experimental data close correlation was obtained among certain surface finish parameters and the machining conditions. To facilitate industrial operations full quadratic prediction models were developed for capturing trends for machining quality in advance

    Thermal cycling behaviour of plasma sprayed nicr-al-co-y2o3 bond coat in thermal barrier coating system

    Get PDF
    The aim of this study was to investigate the thermal cycling behaviour of NiCr-Al-Co-Y2O3 bond coating in thermal barrier coating (TBC) system with ZrO2-MgO as a top coating. The coatings were deposited by atmospheric plasma spraying (APS) on stainless steel X15Cr13 (EN 1.4024) substrate. The used composite powder NiCr-Al-Co-Y2O3 was mechanically cladded, and the steel substrates were preheated to 160-180 degrees C. The thermal cycling performance of the obtained bond coat and the effect of formed complex ceramic oxides of the Al2O3-Y2O3 system were tested by heating to 1200 degrees C and cooling in air to 160-180 degrees C. The number of performed thermal cycles was 7, 32 and 79. The quality of the obtained coating, as well as its thermal cycling behaviour, was assessed through the microstructural analysis, microhardness and tensile bond strength measurements, and change in chemical composition and microhardness. The obtained results showed that the steel substrate, bond coat oxidation and interdiffusion at bond coat/substrate interface have a significant influence on changes in chemical composition and microhardness of the bond coat. The correlation between oxidation behaviour of NiCr-Al-Co-Y2O3 bond coat and number of thermal cycles was also discussed

    The tribological performance of hardfaced/thermal sprayed coatings for increasing the wear resistance of ventilation mill working parts

    Get PDF
    During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings). The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill's working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC)

    Correlation of Microstructures and Tribological Properties of Ferrous Coatings Deposited by Atmospheric Plasma Spraying on Al-Si Cast Alloy Substrate

    No full text
    The microstructure and tribological properties of ferrous coatings applicable to cylinder bores were investigated in this study. Two kinds of ferrous powders were sprayed on Al-Si cast alloy (EN AlSi10Mg) substrate by atmospheric plasma spraying. Microstructural analysis showed that various Fe oxides were formed in the coatings. The presence of pores, unmelted particles, and Fe precipitates was also noticed. The pin-on-ring tribometer was used to carry out tribological tests under lubricated sliding conditions: sliding speed of 0.5 m/s, sliding distance of 5000 m, and normal load of 450 N. High porosity and the presence of larger and irregularly shaped pores as well as the amount of oxides were the controlling factors for the crack initiations and, consequently, the wear rate. Tribological properties of the coatings were compared with gray cast iron as a standard material for cylinder blocks and showed that, for the investigated conditions, both coatings could be an adequate substitution
    corecore