6 research outputs found

    Drumhead Surface States and Topological Nodal-Line Fermions in TlTaSe2

    Full text link
    A topological nodal-line semimetal is a new condensed matter state with one-dimensional bulk nodal lines and two-dimensional drumhead surface bands. Based on first-principles calculations and our effective k . p model, we propose the existence of topological nodal-line fermions in the ternary transition- metal chalcogenide TlTaSe2. The noncentrosymmetric structure and strong spin-orbit coupling give rise to spinful nodal-line bulk states which are protected by a mirror reflection symmetry of this compound. This is remarkably distinguished from other proposed nodal-line semimetals such as Cu3NPb(Zn) in which nodal lines exist only in the limit of vanishing spin-orbit coupling. We show that the drumhead surface states in TlTaSe2, which are associated with the topological nodal lines, exhibit an unconventional chiral spin texture and an exotic Lifshitz transition as a consequence of the linkage among multiple drumhead surface-state pockets.Comment: Related papers at http://physics.princeton.edu/zahidhasangroup/index.htm

    Embedded Topological Semimetals

    Full text link
    Topological semimetals, such as Dirac, Weyl, or line-node semimetals, are gapless states of matter characterized by their nodal band structures and surface states. In this work, we consider layered (topologically trivial) insulating systems in DD dimensions that are composed of coupled multi-layers of dd-dimensional topological semimetals. Despite being nominal bulk insulators, we show that crystal defects having co-dimension (D−d)(D-d) can harbor robust lower dimensional topological semimetals embedded in a trivial insulating background. As an example we show that defect-bound topological semimetals can be localized on stacking faults and partial dislocations. Finally, we propose how an embedded topological Dirac semimetal can be identified in experiment by introducing a magnetic field and resolving the relativistic massless Dirac Landau level spectrum at low energies in an otherwise gapped system.Comment: Published Versio

    Direct transition resonance in atomically uniform topological Sb(111) thin films

    No full text
    Atomically uniform Sb(111) films are fabricated by the method of molecular beam epitaxy on an optimized Si(111) surface. Two dimensional quantum well states and topological surface states in these films are well resolved as measured by angle-resolved photoemission spectroscopy. We observe an evolution of direct transition resonances by varying the excitation photon energy (and thus the perpendicular crystal momentum). The experimental results are reproduced in a comprehensive model calculation taking into account first-principles calculated initial states and time-reversed low-energy-electron-diffraction final states in the photoexcitation process. The resonant behavior illustrates that the topological surface states and the quantum well states are analytically connected in momentum space in all three dimensions
    corecore