156 research outputs found

    Center of mass movement estimation using an ambulatory measurement sytem

    Get PDF
    Center of Mass (CoM) displacement, an important variable to characterize human walking, was estimated in this study using an ambulatory measurement system. The ambulatory system was compared to an optical reference system. Root-mean-square differences between the magnitudes of the CoM appeared to be comparable to those described in literature

    Ambulatory estimation of foot movement during gait using inertial sensors

    Get PDF
    Human body movement analysis is commonly done in so-called 'gait laboratories’. In these laboratories, body movement is masured using optically based systems like Vicon, Optrotrak. The major drawback of these systems is the restriction to a laboratory environment. Therefore research is required to find ways for performing these measurements outside the gait laboratory. The estimation of foot movement is important, since balance is controlled by foot placement during gait. This study investigates whether it is possible to estimate foot movement, specifically foot placement, during gait under ambulatory conditions. The measurement system consisted of an orthopaedic sandal with two six degrees-of-freedom force/moment sensors beneath the heel and the forefoot. It should be noted that the force sensors were merely used for gait phase detection. The position and orientation of heel and forefoot were estimated using the accelerometers and gyroscopes of two miniature inertial sensors, rigidly attached to the force sensors [1,3]. In addition, errors in the walking direction were compensated for by using knowledge about the average walking direction. The proposed ambulatory measurement system was similar to the one used in a previous study [3]. In that study the position and orientation determination was restarted each step, while this study allows estimation of position and orientation during several steps including a change of direction. However, the accuracy should be investigated in more detail by an evaluation study. Moreover, the measurement system can be simplified by using a different gait phase detection system, for example by a gyroscope based detection system [2]. The financial support from the Dutch Ministry of Economic Affairs for the FreeMotion project is gratefully acknowledged. REFERENCES [1] H.J. Luinge and P.H. Veltink, “Measuring orientation of human body segments using miniature gyroscopes and accelerometers”, Med. Bio. Eng. Comp., Vol. 43, pp. 273-282, (2005). [2] I.P.I. Pappas, M.R. Popovic, M.R. Keller, V. Dietz and M. Morari, “A reliable gait phase detection system”, IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 9, pp. 113-125, (2001). [3] H.M. Schepers, P.H. Veltink and H.F.J.M. Koopman, “Ambulatory assessment of ankle and foot dynamics”, IEEE Trans. Biomed. Eng., Submitted, (2006)

    Sensing dynamic interaction with the environment

    Get PDF
    Study of the dynamic interaction with the environment and loading of the human body is important in ergonomics, sports and rehabilititation. This paper presents a method to estimate power transfer between the human body and the environment during short interactions and relatively arbitrary movements using a combination of inertial and force sensing

    Automatic Identification of Inertial Sensors on the Human Body Segments

    Get PDF
    In the last few years, inertial sensors (accelerometers and gyroscopes) in combination with magnetic sensors was proven to be a suitable ambulatory alternative to traditional human motion tracking systems based on optical position measurements. While accurate full 6 degrees of freedom information is available [1], these inertial sensor systems still have some drawbacks, e.g. each sensor has to be attached to a certain predefined body segment. The goal of this project is to develop a ‘Click-On-and-Play’ ambulatory 3D human motion capture system, i.e. a set of (wireless) inertial sensors which can be placed on the human body at arbitrary positions, because they will be identified and localized automatically
    • 

    corecore