993 research outputs found
Generators for the Algebra of Symmetric Functions
The algebra of symmetric functions contains several interesting families of
symmetric functions indexed by integer partitions or skew partitions. Given a
sequence of symmetric functions taken from one of these families such
that is homogeneous of degree , we provide necessary and sufficient
conditions for the sequence to form a system of algebraically independent
generators for the algebra of symmetric functions.Comment: 18 pages, Comments are welcom
Strain Rate Dependent Behavior of Glass/Nano Clay Filled Epoxy Resin Composite
It is believed that addition of small amount of nanoclays in the neat epoxy and fiber reinforced epoxy composite system can improve the mechanical properties. The mechanical properties of most of polymer matrix composites are sensitive to testing rate. However, most of the researches were concentrated on the behavior of the polymermatrix composites at high strain rates. The present research work is to investigate the role of clay on neat epoxy and glass–fiber reinforced epoxy composites, at low strain rates. The clay in terms of 1.5 wt%, 3 wt%, and 5 wt% are dispersed in the epoxy resin using mechanical stirring followed by sonication process. The corresponding glass/epoxy nanocomposites are prepared by impregnating the clay epoxy mixture by hand lay-up process. Characterization of the nanoclay is done by X-ray diffraction and Scanning Electron Microscopy. Tensile stress-strain curves are obtained at strain rates of 10-4 s-1, 10-3 s-1, 10-2 s-1, and 10-1 s-1 by a hydraulic machine reporting that, even at low strain rates, the longitudinal strength and stiffness increase as strain rate increases for all clay loadings. It is observed that the tensile modulus increases as the clay loading increases for both epoxy and glass/epoxy nanocomposites. It is also noticed that the longitudinal tensile strength decreases as the clay loading increases. The failed specimens show marked changes in the fracture surface with increased strain rate. Scanning electron microscopy is used to study the fiber/matrix/clay adhesion in fracture surfaces.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 295-302, DOI:http://dx.doi.org/10.14429/dsj.64.733
Investigation of Wear Behaviour of Al6061 reinforcement with TiC and MoS2
Metal matrix composite (MMC) focuses primarily on improved specific strength, high temperature and wear resistance application. Aluminum matrix reinforced with titanium carbide and molybdenum disulfide has good potential and also self-lubrication. The main challenge is to produce this composite in a cost effective way to meet the above requirements. In this study Al–TiC-MoS2 castings with different volume fraction of TiC and MoS2 were produced in an argon atmosphere by an enhanced stir casting method. Hardness of the composite has increased with higher % of TiC addition. At that same time self-lubrication of composite has occur in the effort of MoS2. Dry sliding wear behavior of AMC was analyses with the help of a pin on disc wear and friction monitor. The present analyses reveal the improved hardness as well as wear resistance
Genotoxic effect of nickel chloride and zinc sulphate on fish Hypophthalmichthys molitrix
The present investigation is to assess the genotoxic potential of nickel chloride and zinc sulphate on gill cells of silver carp Hypophthalmichthys molitrix. Fishes were exposed in sublethal concentration of nickel chloride 5. 7 mg/1 and zinc sulphate 6.8 mg/1, and sampled at 10, 20 and 30 days. Nickel chloride and zinc sulphate treated fishes exhibited an apparent increase in the aberration frequency and a decrease in the mitotic index as compared to
control. Acentric fragment, chromatid break, endoreduplication, chromatid gap, centromeric fusion, ploidy, sticky plate, dicentric chromosome, clumping
and partial sticky plates were some of the abnormalities observed. The chromosomal aberrations in the treated fishes were significant compared to control
Ballistic Impact on Glass/Epoxy Composite Laminates
Glass/epoxy composite laminates are subjected to impact loading and the energy absorbing capacity of the laminates is studied. In the present study, laminates with four different orientations and thickness values are considered. Analytical study is carried out based on energy method and results are compared with FE results obtained from Abaqus/Explicit software. Results obtained from the analytical methods are showing good agreement with the FE results. It is found that cross-ply laminates are most efficient in ballistic resistance when compared with the laminates of other orientations. It is also noticed that the energy absorbing capacity is decreasing with increase in velocity of the projectile for a given lay-up and thickness value.Defence Science Journal, Vol. 64, No. 4, July 2014, pp. 393-399, DOI:http://dx.doi.org/10.14429/dsj.64.3882
On the Existence of Elementwise Invariant Vectors in Representations of Symmetric Groups
We determine when a permutation with cycle type admits a non-zero
invariant vector in the irreducible representation of the symmetric
group. We find that a majority of pairs have this property,
with only a few simple exceptions.Comment: 16 pages, 11 figure
Suppression of pdc2 regulating pyruvate decarboxylase synthesis in yeast
Mutants lacking pyruvate decarboxylase cannot grow on glucose. We have isolated three different complementation groups of extragenic suppressors that suppress mutations in pdc2, a regulatory locus required for the synthesis of the glycolytic enzyme pyruvate decarboxylase. The most frequent of these is a recessive mutation in the structural gene PFK1 of the soluble phosphofructokinase. The other class XSP18 (extragenic suppressor of pdc2) is a dominant temperature-sensitive suppressor that allows the cells to grow on glucose only at 30{deg} but not at 36{deg}. It also affects the normal induction of the glucose-inducible enolase 2, which can be rescued by providing a copy of wild-type xsp18 in trans-heterozygotes. The pyruvate decarboxylase activity in the triple mutant pdc2 pfk1 XSP18 is nearly equal to the sum of the activities in the two double mutants pdc2 pfk1 and pdc2 XSP18, respectively. This implies that the two suppressors act through independent pathways or that there is no cooperativity between them. In the pdc2 pfk1 XSP18 strain, pfk1 suppresses the loss of induction of glucose-inducible enolase 2 brought about by XSP18, but fails to rescue temperature sensitivity. The third class (xsp37) supports the growth of the pdc2 mutant on glucose but fails to support growth on gluconeogenic carbon sources. All the three suppressors suppress pdc2{Delta} as well and act on PDC1 at the level of transcription
1-Methyl-3-(2-methylphenyl)-3a-nitro-1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole
The asymmetric unit of the title compound, C19H20N2O3, contains two independent molecules in both of which the pyrrolidine ring adopts an envelope conformation, but with a C atom as the flap in one molecule and the N atom in the other. The pyran ring adopts a half-chair conformation in both molecules. In the crystal, molecules are linked via C—H⋯O hydrogen bonds and C—H⋯π interactions
- …