259 research outputs found

    Nuclear medicine imaging of multiple myeloma, particularly in the relapsed setting

    Get PDF
    Multiple myeloma (MM) is characterized by a monoclonal plasma cell population in the bone marrow. Lytic lesions occur in up to 90 % of patients. For many years, whole-body X-ray (WBX) was the method of choice for detecting skeleton abnormalities. However, the value of WBX in relapsing disease is limited because lesions persist post-treatment, which restricts the capacity to distinguish between old, inactive skeletal lesions and new, active ones. Therefore, alternative techniques are necessary to visualize disease activity. Modern imaging techniques such as magnetic resonance imaging, positron emission tomography and computed tomography offer superior detection of myeloma bone disease and extramedullary manifestations. In particular, the properties of nuclear imaging enable the identification of disease activity by directly targeting the specific cellular properties of malignant plasma cells. In this review, an overview is provided of the effectiveness of radiopharmaceuticals that target metabolism, surface receptors and angiogenesis. The available literature data for commonly used nuclear imaging tracers, the promising first results of new tracers, and our pilot work indicate that a number of these radiopharmaceutical applications can be used effectively for staging and response monitoring of relapsing MM patients. Moreover, some tracers can potentially be used for radio immunotherapy

    Elevated VMP1 expression in acute myeloid leukemia amplifies autophagy and is protective against venetoclax-induced apoptosis

    Get PDF
    © 2019, The Author(s). Vacuole membrane protein (VMP1) is a putative autophagy protein, which together with Beclin-1 acts as a molecular switch in activating autophagy. In the present study the role of VMP1 was analysed in CD34+ cells of cord blood (CB) and primary acute myeloid leukemia (AML) cells and cell lines. An increased expression of VMP1 was observed in a subset of AML patients. Functional studies in normal CB CD34+ cells indicated that inhibiting VMP1 expression reduced autophagic-flux, coinciding with reduced expansion of hematopoietic stem and progenitor cells (HSPC), delayed differentiation, increased apoptosis and impaired in vivo engraftment. Comparable results were observed in leukemic cell lines and primary AML CD34+ cells. Ultrastructural analysis indicated that leukemic cells overexpressing VMP1 displayed a reduced number of mitochondrial structures, while the number of lysosomal degradation structures was increased. The overexpression of VMP1 did not affect cell proliferation and differentiation, but increased autophagic-flux and improved mitochondrial quality, which coincided with an increased threshold for venetoclax-induced loss of mitochondrial outer membrane permeabilization (MOMP) and apoptosis. In conclusion, our data indicate that in leukemic cells high VMP1 is involved with mitochondrial quality control

    Presence of mutant p53 increases stem cell frequency and is associated with reduced binding to classic TP53 binding sites in cell lines and primary AMLs

    Get PDF
    With an overall 5%-10% incidence rate in acute myeloid leukemia (AML), the occurrence of TP53 mutations is low compared with that in solid tumors. However, when focusing on high-risk groups including secondary AML (sAML) and therapy-related AMLs, the frequency of mutations reaches up to 35%. Mutations may include loss of heterozygosity (LOH) or deletion of the 17p allele, but are mostly missense substitutions that are located in the DNA-binding domain. Despite elaborate research on the effects of TP53 mutations in solid tumors, in hematological malignancies, the effects of TP53 mutations versus loss of TP53 remain unclear and under debate. Here, we compared the cellular effects of a TP53 mutant and loss of TP53 in human hematopoietic stem and progenitor cells (HSPCs). We found that when expressing TP53 mutant or loss of TP53 using siRNA, CD34+/CD38- cells have a significantly enhanced replating potential, which could not be demonstrated for the CD34+/CD38+ population. Using RNA-sequencing analysis, we found a loss of expression of p53 target genes in cells with TP53 knockdown. In contrast, an increased expression of a large number of genes was observed when expressing TP53 mutant, resulting in an increase in expression of genes involved in megakaryocytic differentiation, plasma membrane binding, and extracellular structure organization. When binding of p53 wild type and p53 mutant was compared in cell lines, we found that mutant p53 binds to a large number of binding sites genomewide, contrary to wild-type p53, for which binding is restricted to genes with a p53 binding motif. These findings were verified in primary AMLs with and without mutated TP53. In conclusion, in our models, we identified overlapping effects of TP53 mutant and loss of TP53 on in vitro stem cell properties but distinct effects on DNA binding and gene expression.</p

    Presence of mutant p53 increases stem cell frequency and is associated with reduced binding to classic TP53 binding sites in cell lines and primary AMLs

    Get PDF
    With an overall 5%-10% incidence rate in acute myeloid leukemia (AML), the occurrence of TP53 mutations is low compared with that in solid tumors. However, when focusing on high-risk groups including secondary AML (sAML) and therapy-related AMLs, the frequency of mutations reaches up to 35%. Mutations may include loss of heterozygosity (LOH) or deletion of the 17p allele, but are mostly missense substitutions that are located in the DNA-binding domain. Despite elaborate research on the effects of TP53 mutations in solid tumors, in hematological malignancies, the effects of TP53 mutations versus loss of TP53 remain unclear and under debate. Here, we compared the cellular effects of a TP53 mutant and loss of TP53 in human hematopoietic stem and progenitor cells (HSPCs). We found that when expressing TP53 mutant or loss of TP53 using siRNA, CD34+/CD38- cells have a significantly enhanced replating potential, which could not be demonstrated for the CD34+/CD38+ population. Using RNA-sequencing analysis, we found a loss of expression of p53 target genes in cells with TP53 knockdown. In contrast, an increased expression of a large number of genes was observed when expressing TP53 mutant, resulting in an increase in expression of genes involved in megakaryocytic differentiation, plasma membrane binding, and extracellular structure organization. When binding of p53 wild type and p53 mutant was compared in cell lines, we found that mutant p53 binds to a large number of binding sites genomewide, contrary to wild-type p53, for which binding is restricted to genes with a p53 binding motif. These findings were verified in primary AMLs with and without mutated TP53. In conclusion, in our models, we identified overlapping effects of TP53 mutant and loss of TP53 on in vitro stem cell properties but distinct effects on DNA binding and gene expression

    Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold based xenograft model

    Get PDF
    While NOD-SCID IL2Rγ(-/-) (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal cells were implanted to generate a human bone marrow (huBM-sc)-like niche. We observed that, in contrast to the murine bone marrow (mBM) niche, expression of BCR-ABL or MLL-AF9 was sufficient to induce both primary AML and ALL. Stemness was preserved within the human niches as demonstrated by serial transplantation assays. Efficient engraftment of AML MLL-AF9 and blast-crisis CML patient cells was also observed, whereby the immature blast-like phenotype was maintained in the huBM-sc niche, but to a much lesser extent in mBM niches. We compared transcriptomes of leukemias derived from mBM niches versus leukemias from huBM-like scaffold-based niches, which revealed striking differences in expression of genes associated with hypoxia, mitochondria and metabolism. Finally, we utilized the huBM-sc MLL-AF9 B-ALL model to evaluate the efficacy of the I-BET151 inhibitor in vivo. In conclusion, we have established human niche models in which the myeloid and lymphoid features of BCR-ABL(+) and MLL-AF9(+) leukemias can be studied in detail. Accepted article preview online 29 April 2016; Advance online publication 17 May 2016This work was supported by grants from the Dutch Cancer Society (2009-4411; VU2011-5127) and by the EU (ITN EuroCSC). I-BET151 was kindly provided by Nicholas Smithers (GSK R&D, UK)

    HIF1/2-exerted control over glycolytic gene expression is not functionally relevant for glycolysis in human leukemic stem/progenitor cells

    Get PDF
    Background Hypoxia-inducible factors (HIF)1 and 2 are transcription factors that regulate the homeostatic response to low oxygen conditions. Since data related to the importance of HIF1 and 2 in hematopoietic stem and progenitors is conflicting, we investigated the chromatin binding profiles of HIF1 and HIF2 and linked that to transcriptional networks and the cellular metabolic state. Methods Genome-wide ChIPseq and ChIP-PCR experiments were performed to identify HIF1 and HIF2 binding sites in human acute myeloid leukemia (AML) cells and healthy CD34(+) hematopoietic stem/progenitor cells. Transcriptome studies were performed to identify gene expression changes induced by hypoxia or by overexpression of oxygen-insensitive HIF1 and HIF2 mutants. Metabolism studies were performed by 1D-NMR, and glucose consumption and lactate production levels were determined by spectrophotometric enzyme assays. CRISPR-CAS9-mediated HIF1, HIF2, and ARNT(-/-) lines were generated to study the functional consequences upon loss of HIF signaling, in vitro and in vivo upon transplantation of knockout lines in xenograft mice. Results Genome-wide ChIP-seq and transcriptome studies revealed that overlapping HIF1- and HIF2-controlled loci were highly enriched for various processes including metabolism, particularly glucose metabolism, but also for chromatin organization, cellular response to stress and G protein-coupled receptor signaling. ChIP-qPCR validation studies confirmed that glycolysis-related genes but not genes related to the TCA cycle or glutaminolysis were controlled by both HIF1 and HIF2 in leukemic cell lines and primary AMLs, while in healthy human CD34(+) cells these loci were predominantly controlled by HIF1 and not HIF2. However, and in contrast to our initial hypotheses, CRISPR/Cas9-mediated knockout of HIF signaling did not affect growth, internal metabolite concentrations, glucose consumption or lactate production under hypoxia, not even in vivo upon transplantation of knockout cells into xenograft mice. Conclusion These data indicate that, while HIFs exert control over glycolysis but not OxPHOS gene expression in human leukemic cells, this is not critically important for their metabolic state. In contrast, inhibition of BCR-ABL did impact on glucose consumption and lactate production regardless of the presence of HIFs. These data indicate that oncogene-mediated control over glycolysis can occur independently of hypoxic signaling modules.</p

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains reports on eleven research projects split into three section.U. S. Atomic Energy Commission (Contract AT(30-1)-3980
    • …
    corecore