180 research outputs found

    Universal optimal transmission of light through disordered materials

    Get PDF
    We experimentally demonstrate increased transmission of light through strongly scattering materials. Wavefront shaping is used to selectively couple light to the open transport channels in the material, resulting in an increase of up to 44% in the total transmission. The results for each of several hundreds of experimental runs are in excellent quantitative agreement with random matrix theory. Extrapolating our measurements to the limit of perfect wavefront shaping, we find a universal transmission of 2/3, regardless of the thickness of the sample.Comment: 10 pages, 4 figures. Accepted for publication in Phys. Rev. Let

    Determination of the diffusion constant using phase-sensitive measurements

    Get PDF
    We apply a pulsed-light interferometer to measure both the intensity and the phase of light that is transmitted through a strongly scattering disordered material. From a single set of measurements we obtain the time-resolved intensity, frequency correlations and statistical phase information simultaneously. We compare several independent techniques of measuring the diffusion constant for diffuse propagation of light. By comparing these independent measurements, we obtain experimental proof of the consistency of the diffusion model and corroborate phase statistics theory.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Focusing and Compression of Ultrashort Pulses through Scattering Media

    Full text link
    Light scattering in inhomogeneous media induces wavefront distortions which pose an inherent limitation in many optical applications. Examples range from microscopy and nanosurgery to astronomy. In recent years, ongoing efforts have made the correction of spatial distortions possible by wavefront shaping techniques. However, when ultrashort pulses are employed scattering induces temporal distortions which hinder their use in nonlinear processes such as in multiphoton microscopy and quantum control experiments. Here we show that correction of both spatial and temporal distortions can be attained by manipulating only the spatial degrees of freedom of the incident wavefront. Moreover, by optimizing a nonlinear signal the refocused pulse can be shorter than the input pulse. We demonstrate focusing of 100fs pulses through a 1mm thick brain tissue, and 1000-fold enhancement of a localized two-photon fluorescence signal. Our results open up new possibilities for optical manipulation and nonlinear imaging in scattering media

    A versatile microarray platform for capturing rare cells

    Get PDF
    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences

    Calculating coherent light-wave propagation in large heterogeneous media

    Get PDF
    Understanding the interaction of light with a highly scattering material is essential for optical microscopy of optically thick and heterogeneous biological tissues. Ensemble-averaged analytic solutions cannot provide more than general predictions for relatively simple cases. Yet, biological tissues contain chiral organic molecules and many of the cells' structures are birefringent, a property exploited by polarization microscopy for label-free imaging. Solving Maxwell's equations in such materials is a notoriously hard problem. Here we present an efficient method to determine the propagation of electro-magnetic waves in arbitrary anisotropic materials. We demonstrate how the algorithm enables large scale calculations of the scattered light field in complex birefringent materials, chiral media, and even materials with a negative refractive index

    High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging

    Get PDF
    Progress in neuroscience constantly relies on the development of new techniques to investigate the complex dynamics of neuronal networks. An ongoing challenge is to achieve minimally-invasive and high-resolution observations of neuronal activity in vivo inside deep brain areas. A perspective strategy is to utilise holographic control of light propagation in complex media, which allows converting a hair-thin multimode optical fibre into an ultra-narrow imaging tool. Compared to current endoscopes based on GRIN lenses or fibre bundles, this concept offers a footprint reduction exceeding an order of magnitude, together with a significant enhancement in resolution. We designed a compact and high-speed system for fluorescent imaging at the tip of a fibre, achieving micron-scale resolution across a 50 um field of view, and yielding 7-kilopixel images at a rate of 3.5 frames/s. Furthermore, we demonstrate in vivo observations of cell bodies and processes of inhibitory neurons within deep layers of the visual cortex and hippocampus of anesthetised mice. This study forms the basis for several perspective techniques of modern microscopy to be delivered deep inside the tissue of living animal models while causing minimal impact on its structural and functional properties.Comment: 10 pages, 2 figures, Supplementary movie: https://drive.google.com/file/d/1Fm0G3TAIC49LVX6FaEiAtlefkWx1T2a5/vie

    Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Get PDF
    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm

    Wavefront shaping with disorder-engineered metasurfaces

    Get PDF
    Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input–output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input–output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2 × 10^8 addressable points in an ~8 mm field of view

    Increasing Detection Performance of Surveillance Sensor Networks

    Get PDF
    We study a surveillance wireless sensor network (SWSN) comprised of small and low-cost sensors deployed in a region in order to detect objects crossing the field of interest. In the present paper, we address two problems concerning the design and performance of an SWSN: optimal sensor placement and algorithms for object detection in the presence of false alarms. For both problems, we propose explicit decision rules and efficient algorithmic solutions. Further, we provide several numerical examples and present a simulation model that combines our placement and detection methods
    corecore