3 research outputs found
VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission
The visible infrared thermal imaging spectrometer (VIRTIS) is one of the principal payloads to be launched in 2003 on ESA's Rosetta spacecraft. Its primary scientific objective s are to map the surface of the comet Wirtanen, monitor its temperature, and identify the solids and gaseous species on the nucleus and in the coma. VIRTIS will also collect data on two asteroids, one of which has been identified as Mimistrobell. The data is collected remotely using a mapping spectrometer co-boresighted with a high spectral resolution spectrometer. The mapper consists of a Shafer telescope matched to an Offner grating spectrometer capable of gathering high spatial, medium spectral resolution image cubes in the 0.25 to 5 micrometers waveband. The high spectral resolution spectrometer uses an echelle grating and a cross dispersing prism to achieve resolving powers of 1200 to 300 in the 1.9 to 5 micrometers band. Both sub-systems are passively cooled to 130 K and use two Sterling cycle coolers to enable two HgCdTe detector arrays to operate at 70 K. The mapper also uses a silicon back-side illuminated detector array to cover the ultra-violet to near-infrared optical band
<title>Cassini infrared Fourier spectroscopic investigation</title>
The composite infrared spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. CIRS will retrieve vertical profiles of temperature and gas composition for the atmospheres of Titan and Saturn, from deep in their tropospheres to high in their stratospheres. CIRS will also retrieve information on the thermal properties and composition of Saturn's rings and Saturnian satellites. CIRS consists of a pair of Fourier Transform Spectrometers (FTSs) which together cover the spectral range from 10-1400 cm-1 with a spectral resolution up to 0.5 cm-1. The two interferometers share a 50 cm beryllium Cassegrain telescope. The far-infrared FTS is a polarizing interferometer covering the 10-600 cm-1 range with a pair of thermopile detectors, and a 3.9 mrad field of view. The mid-infrared FTS is a conventional Michelson interferometer covering 200-1400 cm-1 in two spectral bandpasses: 600-1100 cm- 1100-1400 cm(superscript -1 with a 1 by 10 photovoltaic HgCdTe array. Each pixel of the arrays has an approximate 0.3 mrad field of view. The HgCdTe arrays are cooled to approximately 80K with a passive radiative cooler