2,305 research outputs found

    The Liquid Blister Test

    Full text link
    We consider a thin elastic sheet adhering to a stiff substrate by means of the surface tension of a thin liquid layer. Debonding is initiated by imposing a vertical displacement at the centre of the sheet and leads to the formation of a delaminated region, or `blister'. This experiment reveals that the perimeter of the blister takes one of three different forms depending on the vertical displacement imposed. As this displacement is increased, we observe first circular, then undulating and finally triangular blisters. We obtain theoretical predictions for the observed features of each of these three families of blisters. The theory is built upon the F\"{o}ppl-von K\'{a}rm\'{a}n equations for thin elastic plates and accounts for the surface energy of the liquid. We find good quantitative agreement between our theoretical predictions and experimental results, demonstrating that all three families are governed by different balances between elastic and capillary forces. Our results may bear on micrometric tapered devices and other systems where elastic and adhesive forces are in competition.Comment: 23 pages, 11 figs approx published versio

    Indentation of ellipsoidal and cylindrical elastic shells

    Get PDF
    Thin shells are found in nature at scales ranging from viruses to hens’ eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus et al. [Phys. Rev. Lett. (submitted)] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells

    The indentation of pressurized elastic shells: From polymeric capsules to yeast cells

    Get PDF
    Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker’s yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium

    Wrinkling of pressurized elastic shells

    Get PDF
    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We present scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells

    The extra-lymphoid compartment of breast milk: Not a simple transfer of passive immunization

    Get PDF
    Discussion on how breast milk shows similarity to the immune gut micro-environment, creating a sort of immune "extended gut" between mother and child; helps advance the newborn's immune endowment by further tuning mucosal immunity and CD8 memory cells in the early life intestin

    Measures to eradicate multidrug-resistant organism outbreaks: How much does it cost?

    Get PDF
    This study aimed to assess the economic burden of infection control measures that succeeded in eradicating multidrug-resistant organisms (MDROs) in emerging epidemic contexts in hospital settings. The MEDLINE, EMBASE and Ovid databases were systematically interrogated for original English-language articles detailing costs associated with strict measures to eradicate MDROs published between 1 January 1974 and 2 November 2014. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Overall, 13 original articles were retrieved reporting data on several MDROs, including glycopeptide-resistant enterococci (n = 5), carbapenemase-producing Enterobacteriacae (n = 1), methicillin-resistant Staphylococcus aureus (n = 5), and carbapenem-resistant Acinetobacter baumannii (n = 2). Overall, the cost of strict measures to eradicate MDROs ranged from €285 to €57 532 per positive patient. The major component of these overall costs was related to interruption of new admissions, representing €2466 to €47 093 per positive patient (69% of the overall mean cost; range, 13-100%), followed by mean laboratory costs of €628 to €5849 (24%; range, 3.3-56.7%), staff reinforcement costs of €6204 to €148 381 (22%; range, 3.3-52%), and contact precautions costs of €166 to €10 438 per positive patient (18%; range, 0.7-43.3%). Published data on the economic burden of strict measures to eradicate MDROs are limited, heterogeneous, and weakened by several methodological flaws. Novel economic studies should be performed to assess the financial impact of current policies, and to identify the most cost-effective strategies to eradicate emerging MDROs in healthcare facilities

    Dynamics of snapping beams and jumping poppers

    Get PDF
    We consider the dynamic snapping instability of elastic beams and shells. Using the Kirchhoff rod and Föppl-von Kármán plate equations, we study the stability, deformation modes, and snap-through dynamics of an elastic arch with clamped boundaries and subject to a concentrated load. For parameters typical of everyday and technological applications of snapping, we show that the stretchability of the arch plays a critical role in determining not only the post-buckling mode of deformation but also the timescale of snapping and the frequency of the arch's vibrations about its final equilibrium state. We show that the growth rate of the snap-through instability and its subsequent ringing frequency can both be interpreted physically as the result of a sound wave in the material propagating over a distance comparable to the length of the arch. Finally, we extend our analysis of the ringing frequency of indented arches to understand the "pop" heard when everted shell structures snap-through to their stable state. Remarkably, we find that not only are the scaling laws for the ringing frequencies in these two scenarios identical but also the respective prefactors are numerically close; this allows us to develop a master curve for the frequency of ringing in snapping beams and shells

    A prototypical model for tensional wrinkling in thin sheets

    Get PDF
    The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians and engineers. This has been triggered by the growing interest in developing technologies at ever decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. While the most basic buckling instability of uniaxially compressed plates was understood by Euler more than 200 years ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length - a sheet under axisymmetric tensile loads. This geometry, whose first study is attributed to Lam´e, allows us to construct\ud a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that for thin sheets the far-from-threshold regime is expected to emerge under extremely small compressive loads, emphasizing the relevance of our analysis for nanomechanics applications

    Torsional Dynamic Performance of a Transmission Test Bench: An Investigation on the Effect of Motors Controllers Parameters

    Get PDF
    Besides in-vehicle testing, automotive powertrains and their subsystems are extensively studied and verified, in the different development phases, through dedicated test benches having various mechanical layouts according to the specific target. The torsional load is typically applied to the transmission by electric motors connected at both ends of the driveline. The electric motors drives allow speed and torque closed-loop control so that the desired combination of speed and torque can be imposed over time during the experiment. The parameters of such controllers therefore play a crucial role in the torsional dynamic behavior of the bench and therefore must be carefully selected and tuned to achieve optimal reference tracking and disturbance rejection performance. This paper aims at proposing a model-based sensitivity analysis of the PID controllers parameters starting from an experimentally validated torsional model of a Dual Clutch Transmission test rig. The methodology here proposed also contributes to achieving the Sustainable Development Goal 11 promoted by ONU

    Leakage from gravity currents in a porous medium. Part 2. A line sink

    Get PDF
    We consider the propagation of a buoyancy-driven gravity current in a porous medium bounded by a horizontal, impermeable boundary. The current is fed by a constant flux injected at a point and leaks through a line sink at a distance from the injection point. This is an idealized model of how a fault in a cap rock might compromise the geological sequestration of carbon dioxide. The temporal evolution of the efficiency of storage, defined as the instantaneous ratio of the rate at which fluid is stored without leaking to the rate at which it is injected, is of particular interest. We show that the ‘efficiency of storage’ decays like t−2/5 for times t that are long compared with the time taken for the current to reach the fault. This algebraic decay is in contrast to the case of leakage through a circular sink (Neufeld et al., J. Fluid Mech., vol. 2010) where the efficiency of storage decays more slowly like 1/lnt. The implications of the predicted decay in the efficiency of storage are discussed in the context of geological sequestration of carbon dioxide. Using parameter values typical of the demonstration project at Sleipner, Norway, we show that the efficiency of storage should remain greater than 90% on a time scale of millennia, provided that there are no significant faults in the cap rock within about 12km of the injection site
    • …
    corecore