6 research outputs found
Predicting the current distribution of the chacoan peccary (catagonus wagneri) in the gran Chaco
The Chacoan peccary (Catagonus wagneri), or Tagua, an endemic species living in the Chaco eco¬region, is endangered by highly increasing deforestation rates across the region, particularly in the last decade. This situation highlights the need to better understand the current distribution of the species, as well as how environmental conditions affect habitat suitability. This study predicts the distribution of the Chacoan peccary and evaluates the current environmental conditions in the Chaco for this species. Using six environmental variables and 177 confirmed occurrence records (from 2000 to 2015) provided by researchers, we developed a Species Distribution Model (SDM) applying the Maxent algorithm. The final model was highly accurate and significant (p < 0.001; AUC 0.860 ± 0.0268; omission error 1.82 %; post¬hoc validation of omission error using independent presence¬only records 1.33 %), predicting that 46.24 % of the Chaco is suitable habitat for the Chacoan peccary, with the most important areas concentrated in the middle of Paraguay and northern Argentina. Land cover, isothermality and elevation were the variables that better explained the habitat suitability for the Chacoan peccary. Despite some portions of suitable areas occurring inside protected areas, the borders and the central portions of suitable areas have recently suffered from intensive deforestation and development, and most of the highly suitable areas for the species are not under protection. The results provide fundamental insights for the establishment of priority Chacoan peccary conservation areas within its rangeFil: Paschoaletto Micchi, Katia Maria. Universidade Do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz Esalq; Brasil. Conservation Breeding Specialist Group Brazilian network; BrasilFil: Silva Angelieri, Cintia Camila. Universidade Do Sao Paulo. Escola Superior de Agricultura Luiz de Queiroz Esalq; BrasilFil: Altrichter, Mariana. Prescott College; Estados UnidosFil: Desbiez, Arnaud. Royal Zoological Society of Scotland. Edimburgo; Reino Unido. Conservation Breeding Specialist Group Brazilian network; BrasilFil: Yanosky, Alberto. Asociación Guyra Paraguay. Asunción; ParaguayFil: Campos Krauer, Juan Manuel. Centro Chaqueño para la Conservación y la Investigación; ParaguayFil: Torres, Ricardo Jose. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Camino, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; ArgentinaFil: Cabral, Hugo. Asociación Guyra Paraguay. Asunción; ParaguayFil: Cartés, José. Asociación Guyra Paraguay. Asunción; ParaguayFil: Cuellar, Rosa Leny. Fundación Kaa Iya; BoliviaFil: Gallegos, Marcelo. Secretaría de Ambiente de la Provincia de Salta. Programa Guardaparques; ArgentinaFil: Giordano, Anthony J.. No especifica;Fil: Decarre, Julieta. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Maffei, Leonardo. Wildlife Conservation Society. Lima; PerúFil: Neris, Nora. Universidad Nacional de Asunción; ParaguayFil: Saldivar Bellassai, Silvia. Itaipu Binacional; ParaguayFil: Wallace, Robert. Wildlife Conservation Society. New York; Estados UnidosFil: Lizarraga, Leónidas. Delegación Regional Noroeste. Sistema de Información de Biodiversidad de la Administración de Parques Nacionales. Salta; ArgentinaFil: Thompson, Jeffrey. Universidad Nacional de Asunción; ParaguayFil: Velilla, Mariela. Universidad Nacional de Asunción; Paragua
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program “Advanced Instrumentation for Wildlife Protection”, Fondation Segré, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier d’Auvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governor’s Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Özkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, værdier og værktøjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de Doué-la-Fontaine, Zoo Dresden, Zoo Idaho, Kolmården Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y Tecnología (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the “Investissements d’avenir” program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMéRA/Aix-Marseille Université, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
Funding: This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society (NGS-82515R-20) (both grants to C.R.).COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.PostprintPeer reviewe
Behavioral responses of terrestrial mammals to COVID-19 lockdowns (code)
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable, with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns, 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12%, and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide