884 research outputs found

    AAA architectures applied in multi-domain IMS (IP multimedia subsystem)

    Get PDF
    There is a group of communication services that use\ud resources from multiple domains in order to deliver their service.\ud Authorization of the end-user is important for such services,\ud because several domains are involved. There are no current\ud solutions for delivering authentication, authorization and\ud accounting (AAA) to multi-domain services. In our study we\ud present two architectures for the delivery of AAA to such\ud services. The architectures are analyzed on their qualitative\ud aspects. A result of this analysis is that direct interconnection of\ud AAA servers is an effective architectural solution. In current\ud multi-domain IP Multimedia Subsystem (IMS) architectures,\ud direct interconnection of AAA servers, such as the Home\ud Subscriber Servers (HSS), is not yet possible. In this paper we\ud argue and recommend to extend the IMS specification by adding\ud a new interface to HSS in order to support the direct\ud interconnection of HSS/AAA servers located in different IMS\ud administrative domains

    FACT: A Dutch Version of ACT

    Get PDF

    Streamers in air splitting into three branches

    Get PDF
    We investigate the branching of positive streamers in air and present the first systematic investigation of splitting into more than two branches. We study discharges in 100 mbar artificial air that is exposed to voltage pulses of 10 kV applied to a needle electrode 160 mm above a grounded plate. By imaging the discharge with two cameras from three angles, we establish that about every 200th branching event is a branching into three. Branching into three occurs more frequently for the relatively thicker streamers. In fact, we find that the surface of the total streamer cross-sections before and after a branching event is roughly the same.Comment: 6 pages, 7 figure

    Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

    Get PDF
    Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5 to 20 kV, diameters and velocities of the positive streamers have the minimal values of d=0.2 mm and v \approx 10^5 m/s. For 20 to 40 kV, their diameters increase by a factor 6 while the voltage increases only by a factor 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4*10^6 m/s, negative streamers are about 20 % slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v=0.5 d^2/(mm ns) for both polarities. Streamers of both polarities dissipate energies of the order of several mJ per streamer while crossing the gap.Comment: 20 pages, 9 figures, accepted for J. Phys.

    HYDRA: Distributed Multi-Objective Optimization for Designers

    Get PDF
    Architectural design problems can be quite involved, as there is a plethora of – usually conflicting – criteria that one has to address in order to find an optimal, performative solution. Multi-Objective Optimization (MOO) techniques can thus prove very useful, as they provide solution spaces which can traverse the different trade-offs of convoluted design options. Nevertheless, they are not widely used as (a) they are computationally expensive and (b) the resulting solution space can be proven difficult to visualize and navigate, particularly when dealing with higher dimensional spaces. This paper will present a system, which merges bespoke multi-objective optimization with a parametric CAD system, enhanced by supercomputing, into a single, coherent workflow, in order to address the above issues. The system architecture ensures optimal use of existing compute resources and enables massive performance speed-up, allowing for fast review and delivery cycles. The application aims to provide architects, designers and engineers with a better understanding of the design space, aiding the decision-making process by procuring tangible data from different objectives and finally providing fit (and sometimes unforeseen) solutions to a design problem. This is primarily achieved by a graphical interface of easy to navigate solution spaces of design options, derived from their respective Pareto fronts, in the form of a web-based interactive dashboard. Since understanding high-dimensionality data is a difficult task, multivariate analysis techniques were implemented to post-process the data before displaying it to end users. Visual Data Mining (VDM) and Machine Learning (ML) techniques were incorporated to facilitate knowledge discovery and exploration of large sets of design options at an early design stage. The system is demonstrated and assessed on an applied design case study of a master-planning project, where the benefits of the process are more evident, especially due to its complexity and size

    Power laws and self-similar behavior in negative ionization fronts

    Full text link
    We study anode-directed ionization fronts in curved geometries. When the magnetic effects can be neglected, an electric shielding factor determines the behavior of the electric field and the charged particle densities. From a minimal streamer model, a Burgers type equation which governs the dynamics of the electric shielding factor is obtained. A Lagrangian formulation is then derived to analyze the ionization fronts. Power laws for the velocity and the amplitude of streamer fronts are observed numerically and calculated analytically by using the shielding factor formulation. The phenomenon of geometrical diffusion is explained and clarified, and a universal self-similar asymptotic behavior is derived.Comment: 25 pages, 9 figure

    Numerical and experimental investigation of dielectric recovery in super-critical nitrogen

    Get PDF
    A supercritical (SC) nitrogen (N2) switch is designed and tested. The dielectric strength and recovery rate of the SC switch are investigated by experiments. In order to theoretically study the discharge and recovery process of the SC N2 switch under high repetition rate operation, a numerical model is developed. For SC N2 with initial parameters of p = 80.9 bar and T = 300 K, the simulation results show that within several nanoseconds after the streamer bridges the switch gap, the spark is fully developed and this time depends on the applied electric field between electrodes. During the whole discharge process, the maximum temperature in the channel is about 20 000 K. About 10ÎĽs after the spark excitation of 200 ns duration, the temperature on the axis decays to Taxis 1500 K, mainly contributed by the gas expansion and heat transfer mechanisms. After 100ÎĽs, the dielectric strength of the gap recovers to above half of the cold breakdown voltage due to the temperature decay in the channel. Both experimental and numerical investigations indicate that supercritical fluid is a good insulating medium that has a proved high breakdown voltage and fast recovery speed
    • …
    corecore