93 research outputs found

    Noncontact respiration monitoring techniques in young children:A scoping review

    Get PDF
    Pediatric sleep-related breathing disorders, or sleep-disordered breathing (SDB), cover a range of conditions, including obstructive sleep apnea, central sleep apnea, sleep-related hypoventilation disorders, and sleep-related hypoxemia disorder. Pediatric SDB is often underdiagnosed, potentially due to difficulties associated with performing the gold standard polysomnography in children. This scoping review aims to: (1) provide an overview of the studies reporting on safe, noncontact monitoring of respiration in young children, (2) describe the accuracy of these techniques, and (3) highlight their respective advantages and limitations. PubMed and EMBASE were searched for studies researching techniques in children &lt;12 years old. Both quantitative data and the quality of the studies were analyzed. The evaluation of study quality was conducted using the QUADAS-2 tool. A total of 19 studies were included. Techniques could be grouped into bed-based methods, microwave radar, video, infrared (IR) cameras, and garment-embedded sensors. Most studies either measured respiratory rate (RR) or detected apneas; n = 2 aimed to do both. At present, bed-based approaches are at the forefront of research in noncontact RR monitoring in children, boasting the most sophisticated algorithms in this field. Yet, despite extensive studies, there remains no consensus on a definitive method that outperforms the rest. The accuracies reported by these studies tend to cluster within a similar range, indicating that no single technique has emerged as markedly superior. Notably, all identified methods demonstrate capability in detecting body movements and RR, with reported safety for use in children across the board. Further research into contactless alternatives should focus on cost-effectiveness, ease-of-use, and widespread availability.</p

    Ultra-wideband radar for simultaneous and unobtrusive monitoring of respiratory and heart rates in early childhood:A Deep Transfer Learning Approach

    Get PDF
    Unobtrusive monitoring of children’s heart rate (HR) and respiratory rate (RR) can be valuable for promoting the early detection of potential health issues, improving communication with healthcare providers and reducing unnecessary hospital visits. A promising solution for wireless vital sign monitoring is radar technology. This paper presents a novel approach for the simultaneous estimation of children’s RR and HR utilizing ultra-wideband (UWB) radar using a deep transfer learning algorithm in a cohort of 55 children. The HR and RR are calculated by processing radar signals via spectrogram from time epochs of 10 s (25 sample length of hamming window with 90% overlap) and then transforming the resultant representation into 2-dimensional images. These images were fed into a pre-trained Visual Geometry Group-16 (VGG-16) model (trained on ImageNet dataset), with weights of five added layers fine-tuned using the proposed data. The prediction on the test data achieved a mean absolute error (MAE) of 7.3 beats per minute (BPM &lt; 6.5% of average HR) and 2.63 breaths per minute (BPM &lt; 7% of average RR). We also achieved a significant Pearson’s correlation of 77% and 81% between true and extracted for HR and RR, respectively. HR and RR samples are extracted every 10 s.</p

    Noncontact respiration monitoring techniques in young children: A scoping review

    Get PDF
    Pediatric sleep-related breathing disorders, or sleep-disordered breathing (SDB), cover a range of conditions, including obstructive sleep apnea, central sleep apnea, sleep-related hypoventilation disorders, and sleep-related hypoxemia disorder. Pediatric SDB is often underdiagnosed, potentially due to difficulties associated with performing the gold standard polysomnography in children. This scoping review aims to: (1) provide an overview of the studies reporting on safe, noncontact monitoring of respiration in young children, (2) describe the accuracy of these techniques, and (3) highlight their respective advantages and limitations. PubMed and EMBASE were searched for studies researching techniques in children <12 years old. Both quantitative data and the quality of the studies were analyzed. The evaluation of study quality was conducted using the QUADAS-2 tool. A total of 19 studies were included. Techniques could be grouped into bed-based methods, microwave radar, video, infrared (IR) cameras, and garment-embedded sensors. Most studies either measured respiratory rate (RR) or detected apneas; n = 2 aimed to do both. At present, bed-based approaches are at the forefront of research in noncontact RR monitoring in children, boasting the most sophisticated algorithms in this field. Yet, despite extensive studies, there remains no consensus on a definitive method that outperforms the rest. The accuracies reported by these studies tend to cluster within a similar range, indicating that no single technique has emerged as markedly superior. Notably, all identified methods demonstrate capability in detecting body movements and RR, with reported safety for use in children across the board. Further research into contactless alternatives should focus on cost-effectiveness, ease-of-use, and widespread availability

    Ultra-Wideband Radar for Simultaneous and Unobtrusive Monitoring of Respiratory and Heart Rates in Early Childhood: A Deep Transfer Learning Approach

    Get PDF
    Unobtrusive monitoring of children's heart rate (HR) and respiratory rate (RR) can be valuable for promoting the early detection of potential health issues, improving communication with healthcare providers and reducing unnecessary hospital visits. A promising solution for wireless vital sign monitoring is radar technology. This paper presents a novel approach for the simultaneous estimation of children's RR and HR utilizing ultra-wideband (UWB) radar using a deep transfer learning algorithm in a cohort of 55 children. The HR and RR are calculated by processing radar signals via spectrogram from time epochs of 10 s (25 sample length of hamming window with 90% overlap) and then transforming the resultant representation into 2-dimensional images. These images were fed into a pre-trained Visual Geometry Group-16 (VGG-16) model (trained on ImageNet dataset), with weights of five added layers fine-tuned using the proposed data. The prediction on the test data achieved a mean absolute error (MAE) of 7.3 beats per minute (BPM < 6.5% of average HR) and 2.63 breaths per minute (BPM < 7% of average RR). We also achieved a significant Pearson's correlation of 77% and 81% between true and extracted for HR and RR, respectively. HR and RR samples are extracted every 10 s

    The RESISTANT study (Respiratory Muscle Training in Patients with Spinal Muscular Atrophy): study protocol for a randomized controlled trial

    Get PDF
    Background: Spinal Muscular Atrophy (SMA) is characterized by progressive and predominantly proximal and axial muscle atrophy and weakness. Respiratory muscle weakness results in impaired cough with recurrent respiratory tract infections, nocturnal hypoventilation, and may ultimately lead to fatal respiratory failure in the most severely affected patients. Treatment strategies to either slow down the decline or improve respiratory muscle function are wanting. Objective: The aim of this study is to assess the feasibility and efficacy of respiratory muscle training (RMT) in patients with SMA and respiratory muscle weakness. Methods: The effect of RMT in patients with SMA, aged ≥ 8 years with respiratory muscle weakness (maximum inspiratory mouth pressure [PImax] ≤ 80 Centimeters of Water Column [cmH2O]), will be investigated with a single blinded randomized sham-controlled trial consisting of a 4-month training period followed by an 8-month open label extension phase. Intervention: The RMT program will consist of a home-based, individualized training program involving 30-breathing cycles through an inspiratory and expiratory muscle training device. Patients will be instructed to perform 10 training sessions over 5–7 days per week. In the active training group, the inspiratory and expiratory threshold will be adjusted to perceived exertion (measured on a Borg scale). The sham-control group will initially receive RMT at the same frequency but against a constant, non-therapeutic resistance. After four months the sham-control group will undergo the same intervention as the active training group (i.e., delayed intervention). Individual adherence to the RMT protocol will be reviewed every two weeks by telephone/video call with a physiotherapist. Main study parameters/endpoints: We hypothesize that the RMT program will be feasible (good adherence and good acceptability) and improve inspiratory muscle strength (primary outcome measure) and expiratory muscle strength (key secondary outcome measure) as well as lung function, patient reported breathing difficulties, respiratory infections, and health related quality of life (additional secondary outcome measures, respectively) in patients with SMA. Discussion: RMT is expected to have positive effects on respiratory muscle strength in patients with SMA. Integrating RMT with recently introduced genetic therapies for SMA may improve respiratory muscle strength in this patient population. Trial registration: Retrospectively registered at clinicaltrial.gov: NCT05632666

    Respiratory muscle fatigability in patients with spinal muscular atrophy

    Get PDF
    Background: Respiratory failure is a major cause of morbidity and mortality in patients with Spinal Muscular Atrophy (SMA). Lack of endurance, or “fatigability,” is an important symptom of SMA. In addition to respiratory muscle weakness, respiratory function in SMA may be affected by Respiratory Muscle Fatigability (RMF). Aim: The purpose of this study was to explore RMF in patients with SMA. Methods: We assessed a Respiratory Endurance Test (RET) in 19 children (median age [years]: 11) and 36 adults (median age [years]: 34) with SMA types 2 and 3. Participants were instructed to breath against an inspiratory threshold load at either 20%, 35%, 45%, 55%, or 70% of their individual maximal inspiratory mouth pressure (PImax). RMF was defined as the inability to complete 60 consecutive breaths. Respiratory fatigability response was determined by change in maximal inspiratory mouth pressure (ΔPImax) and perceived fatigue (∆perceived fatigue). Results: The probability of RMF during the RET increased by 59%−69% over 60 breaths with every 10% increase in inspiratory threshold load (%PImax). Fatigability response was characterized by a large variability in ΔPImax (−21% to +16%) and a small increase in perceived fatigue (p = 0.041, range 0 to +3). Conclusion and Key Findings: Patients with SMA demonstrate a dose-dependent increase in RMF without severe increase in exercise-induced muscle weakness or perceived fatigue. Inspiratory muscle loading in patients with SMA seems feasible and its potential to stabilize or improve respiratory function in patients with SMA needs to be determined in further research

    Short-term effect of air stacking and mechanical insufflation-exsufflation on lung function in patients with neuromuscular diseases

    Get PDF
    Air stacking (AS) and mechanical insufflation-exsufflation (MI-E) aim to increase cough efficacy by augmenting inspiratory lung volumes in patients with neuromuscular diseases (NMDs). We studied the short-term effect of AS and MI-E on lung function. We prospectively included NMD patients familiar with daily AS or MI-E use. Studied outcomes were forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and peak expiratory flow (PEF) prior to, immediately after, and up to 2 h after treatment. Paired sample T-test and Wilcoxon signed-rank test was used. Sixty-seven patients participated. We observed increased FVC and FEV1 immediately after AS with a mean difference of respectively 0.090 L (95% CI 0.045; 0.135, p < .001) and 0.073 L (95% CI 0.017; 0.128, p = .012). Increased FVC immediately after MI-E (mean difference 0.059 L (95% CI 0.010; 0.109, p = .021) persisted 1 hour (mean difference 0.079 L (95% CI 0.034; 0.125, p = .003). The effect of treatment was more pronounced in patients diagnosed with Spinal Muscular Atrophy, compared to patients with Duchenne muscular dystrophy. AS and MI-E improved FVC immediately after treatment, which persisted 1 h after MI-E. There is insufficient evidence that short-lasting increases in FVC would explain the possible beneficial effect of AS and MI-E

    Short term effect and effect on rate of lung function decline after surgery for neuromuscular or syndromic scoliosis

    Get PDF
    Introduction: Understanding the impact of scoliosis surgery on lung function is important for counseling patients about risks and benefits of surgery. We prospectively compared the trends in lung function test (LFT) results before and after scoliosis surgery in children with neuromuscular diseases or dysmorphic syndromes. We hypothesized a stabilization. Methods: We prospectively included children with neuromuscular or syndromic scoliosis able to perform LFTs. We studied (forced) vital capacity ([F]VC), ratio of forced expiratory volume in 1 s (FEV1) and FVC, and peak expiratory flow (PEF). Preoperative LFT results were compared with results 3–4 months after surgery. The mean monthly change in LFT results up to 2 years after surgery was compared with the preoperative natural history using linear mixed-effects models. Results: We included 43 patients. No significant change was observed in absolute values of (F)VC, FEV1/FVC, and PEF before and after surgery. In 23 neuromuscular patients median standardized VC, FVC, and PEF decreased significantly after surgery from 43% to 33%, 42% to 31%, and 51% to 40%, respectively. In 20 syndromic patients, median FVC decreased from 68% to 65%. The monthly rate of change in FVC did not change significantly in both groups with a mean difference of 0.18% (95% CI: −0.27, −0.61) and −0.44% (95% CI: −1.05, 0.16). Conclusion: No stabilization of lung function 3–4 months after scoliosis surgery was observed in children with neuromuscular and syndromic scoliosis with restrictive lung function disease. The effect on the rate of lung function decline remains inconclusive

    Oscillometry: a substitute of spirometry in children with neuromuscular diseases?

    Get PDF
    Introduction: Spirometry plays an important role in the assessment of possible respiratory failure in children with neuromuscular diseases (NMDs). However, obtaining reliable spirometry results is a major challenge. We studied the relation between oscillometry and spirometry results. Oscillometry is an easy, noninvasive method to measure respiratory resistance R and reactance X. We hypothesized an increased R and reduced X in patients with more reduced lung function. Methods: In this prospective single-center study, we included all children with NMDs able to perform spirometry. We consecutively measured R and X at 5, 11, and 19 Hz and (forced) vital capacity, peak expiratory flow. Spearman correlation coefficients and positive and negative predictive values were calculated. Regression curves were estimated. Results: We included 148 patients, median age 13 years (interquartile range: 8–16). A negative correlation was found between R and spirometry outcomes (Spearman correlation coefficient [ρ]: −0.5 to −0.6, p < 0.001). A positive correlation was found between X (i.e., less negative outcomes) and spirometry outcomes (ρ: 0.4–0.6, p < 0.001). Highest correlation was found at lower frequencies. Regression analysis showed a nonlinear relation. Measurement of inspiratory and expiratory R and X did not provide added value. Positive predictive values of 80%–85% were found for z-scores of R measured at 5 Hz versus (F)VC ≤ 60%. Conclusion: We found a nonlinear relation between oscillometry and spirometry results with increased R and reduced X in patients with more restrictive lung function decline. Given the difficulties with performing spirometry, oscillometry may be a promising substitute
    corecore