9 research outputs found

    Nuclear export regulation of COP1 by 14-3-3Ļƒ in response to DNA damage

    Get PDF
    Mammalian constitutive photomorphogenic 1 (COP1) is a p53 E3 ubiquitin ligase involved in regulating p53 protein level. In plants, the dynamic cytoplasm/nucleus distribution of COP1 is important for its function in terms of catalyzing the degradation of target proteins. In mammalian cells, the biological consequence of cytoplasmic distribution of COP1 is not well characterized. Here, we show that DNA damage leads to the redistribution of COP1 to the cytoplasm and that 14-3-3Ļƒ, a p53 target gene product, controls COP1 subcellular localization. Investigation of the underlying mechanism suggests that COP1 S387 phosphorylation is required for COP1 to bind 14-3-3Ļƒ. Significantly, upon DNA damage, 14-3-3Ļƒ binds to phosphorylated COP1 at S387, resulting in COP1's accumulation in the cytoplasm. Cytoplasmic COP1 localization leads to its enhanced ubiquitination. We also show that N-terminal 14-3-3Ļƒ interacts with COP1 and promotes COP1 nuclear export through its NES sequence. Further, we show that COP1 is important in causing p53 nuclear exclusion. Finally, we demonstrate that 14-3-3Ļƒ targets COP1 for nuclear export, thereby preventing COP1-mediated p53 nuclear export. Together, these results define a novel, detailed mechanism for the subcellular localization and regulation of COP1 after DNA damage and provide a mechanistic explanation for the notion that 14-3-3Ļƒ's impact on the inhibition of p53 E3 ligases is an important step for p53 stabilization after DNA damage

    Antineoplastic effects of an Aurora B kinase inhibitor in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aurora B kinase is an important mitotic kinase involved in chromosome segregation and cytokinesis. It is overexpressed in many cancers and thus may be an important molecular target for chemotherapy. AZD1152 is the prodrug for AZD1152-HQPA, which is a selective inhibitor of Aurora B kinase activity. Preclinical antineoplastic activity of AZD1152 against acute myelogenous leukemia, multiple myeloma and colorectal cancer has been reported. However, this compound has not been evaluated in breast cancer, the second leading cause of cancer deaths among women.</p> <p>Results</p> <p>The antineoplastic activity of AZD1152-HQPA in six human breast cancer cell lines, three of which overexpress HER2, is demonstrated. AZD1152-HQPA specifically inhibited Aurora B kinase activity in breast cancer cells, thereby causing mitotic catastrophe, polyploidy and apoptosis, which in turn led to apoptotic death. AZD1152 administration efficiently suppressed the tumor growth in a breast cancer cell xenograft model. In addition, AZD1152 also inhibited pulmonary metastatic nodule formation in a metastatic breast cancer model. Notably, it was also found that the protein level of Aurora B kinase declined after inhibition of Aurora B kinase activity by AZD1152-HQPA in a time- and dose-dependent manner. Investigation of the underlying mechanism suggested that AZD1152-HQPA accelerated protein turnover of Aurora B via enhancing its ubiquitination.</p> <p>Conclusions</p> <p>It was shown that AZD1152 is an effective antineoplastic agent for breast cancer, and our results define a novel mechanism for posttranscriptional regulation of Aurora B after AZD1152 treatment and provide insight into dosing regimen design for this kinase inhibitor in metastatic breast cancer treatment.</p
    corecore