5 research outputs found

    In situ delivery of nanoparticles formulated with micron-sized crystals protects from murine melanoma.

    Get PDF
    INTRODUCTION Intratumoral injections of novel therapeutics can activate tumor antigen-specific T cells for locoregional tumor control and may even induce durable systemic protection (against distant metastases) via recirculating T cells. Here we explored the possibility of a universal immunotherapy that promotes T-cell responses in situ and beyond, upon intratumoral injection of nanoparticles formulated with micron-sized crystals. METHODS Cucumber mosaic virus-like particles containing a tetanus toxin peptide (CuMVTT) were formulated with microcrystalline tyrosine (MCT) adjuvant and injected directly in B16F10 melanoma tumors. To further enhance immunogenicity, we loaded the nanoparticles with a TLR7/8 ligand and incorporated a universal tetanus toxin T-helper cell peptide. We assessed therapeutic efficacy and induction of local and systemic immune responses, including RNA sequencing, providing broad insight into the tumor microenvironment and correlates of protection. RESULTS MCT crystals were successfully decorated with CuMVTT nanoparticles. This 'immune-enhancer' formed immunogenic depots in injected tumors, enhanced polyfunctional CD8+ and CD4+ T cells, and inhibited B16F10 tumor growth locally and systemically. Local inflammation and immune responses were associated with upregulation of genes involved in complement activation and collagen formation. CONCLUSIONS Our new immune-enhancer turned immunologically cold tumors into hot ones and inhibited local and distant tumor growth. This type of immunotherapy does not require the identification of (patient-individual) relevant tumor antigens. It is well tolerated, non-infectious, and affordable, and can readily be upscaled for future clinical testing and broad application in melanoma and likely other solid tumors

    Shaping Modern Vaccines: Adjuvant Systems Using MicroCrystalline Tyrosine (MCT®).

    Get PDF
    The concept of adjuvants or adjuvant systems, used in vaccines, exploit evolutionary relationships associated with how the immune system may initially respond to a foreign antigen or pathogen, thus mimicking natural exposure. This is particularly relevant during the non-specific innate stage of the immune response; as such, the quality of this response may dictate specific adaptive responses and conferred memory/protection to that specific antigen or pathogen. Therefore, adjuvants may optimise this response in the most appropriate way for a specific disease. The most commonly used traditional adjuvants are aluminium salts; however, a biodegradable adjuvant, MCT®, was developed for application in the niche area of allergy immunotherapy (AIT), also in combination with a TLR-4 adjuvant-Monophosphoryl Lipid A (MPL®)-producing the first adjuvant system approach for AIT in the clinic. In the last decade, the use and effectiveness of MCT® across a variety of disease models in the preclinical setting highlight it as a promising platform for adjuvant systems, to help overcome the challenges of modern vaccines. A consequence of bringing together, for the first time, a unified view of MCT® mode-of-action from multiple experiments and adjuvant systems will help facilitate future rational design of vaccines while shaping their success

    Venom Immunotherapy: From Proteins to Product to Patient Protection

    Get PDF
    In this review, we outline and reflect on the important differences between allergen-specific immunotherapy for inhalant allergies (i.e., aeroallergens) and venom-specific immunotherapy (VIT), with a special focus on Venomil® Bee and Wasp. Venomil® is provided as a freeze-dried extract and a diluent to prepare a solution for injection for the treatment of patients with IgE-mediated allergies to bee and/or wasp venom and for evaluating the degree of sensitivity in a skin test. While the materials that make up the product have not changed, the suppliers of raw materials have changed over the years. Here, we consolidate relevant historical safety and efficacy studies that used products from shared manufacture supply profiles, i.e., products from Bayer or Hollister–Stier. We also consider the characterization and standardization of venom marker allergens, providing insights into manufacturing controls that have produced stable and consistent quality profiles over many years. Quality differences between products and their impacts on treatment outcomes have been a current topic of discussion and further research. Finally, we review the considerations surrounding the choice of depot adjuvant most suitable to augmenting VIT

    The next generation virus-like particle platform for the treatment of peanut allergy.

    No full text
    BACKGROUND Allergy to peanut is one of the leading causes of anaphylactic reactions among food allergic patients. Immunization against peanut allergy with a safe and protective vaccine holds a promise to induce durable protection against anaphylaxis caused by exposure to peanut. A novel vaccine candidate (VLP Peanut), based on virus-like particles (VLPs), is described here for the treatment of peanut allergy. METHODS AND RESULTS VLP Peanut consist of two proteins: a capsid subunit derived from Cucumber mosaic virus engineered with a universal T cell epitope (CuMVTT ) and a CuMVTT subunit fused with peanut allergen Ara h 2 (CuMVTT -Ara h 2), forming mosaic VLPs. Immunizations with VLP Peanut in both naïve and peanut-sensitised mice resulted in a significant anti-Ara h 2 IgG response. Local and systemic protection induced by VLP Peanut were established in mouse models for peanut allergy following prophylactic, therapeutic and passive immunizations. Inhibition of FcγRIIb function resulted in a loss of protection, confirming the crucial role of the receptor in conferring cross protection against peanut allergens other than Ara h 2. CONCLUSION VLP Peanut can be delivered to peanut-sensitized mice without triggering allergic reactions, whilst remaining highly immunogenic and offering protection against all peanut allergens. In addition, vaccination ablates allergic symptoms upon allergen challenge. Moreover, the prophylactic immunization setting conferred the protection against subsequent peanut-induced anaphylaxis, showing the potential for preventive vaccination. This highlights the effectiveness of VLP Peanut as a prospective break-through immunotherapy vaccine candidate towards peanut allergy. VLP Peanut has now entered clinical development with the study PROTECT
    corecore