3 research outputs found

    A Search for Photons with Energies Above 2X10(17) eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory

    Get PDF
    Ultra-high-energy photons with energies exceeding 10(17) eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 10(15) eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 x 10(17) eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 10(17) and 10(18) eV

    : , , (Antiquity in the Middle Ages: Literature, Power, Law)

    No full text

    Testing hadronic-model predictions of depth of maximum of air-shower profiles and ground-particle signals using hybrid data of the Pierre Auger Observatory

    No full text
    We test the predictions of hadronic interaction models regarding the depth of maximum of air-shower profiles, Xmax , and ground-particle signals in water-Cherenkov detectors at 1000 m from the shower core, Sð1000Þ, using the data from the fluorescence and surface detectors of the Pierre Auger Observatory. The test consists of fitting the measured two-dimensional (Sð1000Þ, Xmax ) distributions using templates for simulated air showers produced with hadronic interaction models E pos-LHC , QGSJ et-II -04, SIBYLL 2.3d and leaving the scales of predicted Xmax and the signals from hadronic component at ground as free-fit parameters. The method relies on the assumption that the mass composition remains the same at all zenith angles, while the longitudinal shower development and attenuation of ground signal depend on the mass composition in a correlated way. The analysis was applied to 2239 events detected by both the fluorescence and surface detectors of the Pierre Auger Observatory with energies between 10 18.5 eV to 10 19.0 eV and zenith angles below 60°. We found, that within the assumptions of the method, the best description of the data is achieved if the predictions of the hadronic interaction models are shifted to deeper Xmax values and larger hadronic signals at all zenith angles. Given the magnitude of the shifts and the data sample size, the statistical significance of the improvement of data description using the modifications considered in the paper is larger than 5σ even for any linear combination of experimental systematic uncertainties
    corecore