17 research outputs found

    Inter-observer agreement according to three methods of evaluating mammographic density and parenchymal pattern in a case control study:impact on relative risk of breast cancer

    Get PDF
    BACKGROUND: Mammographic breast density and parenchymal patterns are well-established risk factors for breast cancer. We aimed to report inter-observer agreement on three different subjective ways of assessing mammographic density and parenchymal pattern, and secondarily to examine what potential impact reproducibility has on relative risk estimates of breast cancer. METHODS: This retrospective case–control study included 122 cases and 262 age- and time matched controls (765 breasts) based on a 2007 screening cohort of 14,736 women with negative screening mammograms from Bispebjerg Hospital, Copenhagen. Digitised randomized film-based mammograms were classified independently by two readers according to two radiological visual classifications (BI-RADS and Tabár) and a computerized interactive threshold technique measuring area-based percent mammographic density (denoted PMD). Kappa statistics, Intraclass Correlation Coefficient (ICC) (equivalent to weighted kappa), Pearson’s linear correlation coefficient and limits-of-agreement analysis were used to evaluate inter-observer agreement. High/low-risk agreement was also determined by defining the following categories as high-risk: BI-RADS’s D3 and D4, Tabár’s PIV and PV and the upper two quartiles (within density range) of PMD. The relative risk of breast cancer was estimated using logistic regression to calculate odds ratios (ORs) adjusted for age, which were compared between the two readers. RESULTS: Substantial inter-observer agreement was seen for BI-RADS and Tabár (κ=0.68 and 0.64) and agreement was almost perfect when ICC was calculated for the ordinal BI-RADS scale (ICC=0.88) and the continuous PMD measure (ICC=0.93). The two readers judged 5% (PMD), 10% (Tabár) and 13% (BI-RADS) of the women to different high/low-risk categories, respectively. Inter-reader variability showed different impact on the relative risk of breast cancer estimated by the two readers on a multiple-category scale, however, not on a high/low-risk scale. Tabár’s pattern IV demonstrated the highest ORs of all density patterns investigated. CONCLUSIONS: Our study shows the Tabár classification has comparable inter-observer reproducibility with well tested density methods, and confirms the association between Tabár’s PIV and breast cancer. In spite of comparable high inter-observer agreement for all three methods, impact on ORs for breast cancer seems to differ according to the density scale used. Automated computerized techniques are needed to fully overcome the impact of subjectivity

    Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening:a case-control study

    Get PDF
    BACKGROUND: Mammographic density is a well-established risk factor for breast cancer. We investigated the association between three different methods of measuring density or parenchymal pattern/texture on digitized film-based mammograms, and examined to what extent textural features independently and jointly with density can improve the ability to identify screening women at increased risk of breast cancer. METHODS: The study included 121 cases and 259 age- and time matched controls based on a cohort of 14,736 women with negative screening mammograms from a population-based screening programme in Denmark in 2007 (followed until 31 December 2010). Mammograms were assessed using the Breast Imaging-Reporting and Data System (BI-RADS) density classification, Tabár’s classification on parenchymal patterns and a fully automated texture quantification technique. The individual and combined association with breast cancer was estimated using binary logistic regression to calculate Odds Ratios (ORs) and the area under the receiver operating characteristic (ROC) curves (AUCs). RESULTS: Cases showed significantly higher BI-RADS and texture scores on average than controls (p < 0.001). All three methods were individually able to segregate women into different risk groups showing significant ORs for BI-RADS D3 and D4 (OR: 2.37; 1.32–4.25 and 3.93; 1.88–8.20), Tabár’s PIII and PIV (OR: 3.23; 1.20–8.75 and 4.40; 2.31–8.38), and the highest quartile of the texture score (3.04; 1.63–5.67). AUCs for BI-RADS, Tabár and the texture scores (continuous) were 0.63 (0.57–0–69), 0.65 (0.59–0–71) and 0.63 (0.57–0–69), respectively. Combining two or more methods increased model fit in all combinations, demonstrating the highest AUC of 0.69 (0.63-0.74) when all three methods were combined (a significant increase from standard BI-RADS alone). CONCLUSION: Our findings suggest that the (relative) amount of fibroglandular tissue (density) and mammographic structural features (texture/parenchymal pattern) jointly can improve risk segregation of screening women, using information already available from normal screening routine, in respect to future personalized screening strategies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-016-2450-7) contains supplementary material, which is available to authorized users

    Danish Quality Database for Mammography Screening

    No full text
    AIM: The Danish Quality Database for Mammography Screening (DKMS) was established in 2007, with the aim to monitor, sustain, and improve the quality of the Danish national breast cancer screening program. STUDY POPULATION: All Danish women aged 50–69 years who were invited every 2 years for breast cancer screening in the nationwide program since July 10, 2007. MAIN VARIABLES: The DKMS consists of data retrieved from the five regional invitation systems, the National Pathology Registry, and the National Registry of Patients. The DKMS covers the entire screening process and includes variables required to determine the following eleven indicators: 1) radiation exposure, 2) participation among invited women and participation within the target population, 3) time between screening and result, 4) screening interval, 5) recall for further diagnostics, 6) interval cancers consisting of women diagnosed with breast cancer between screening rounds, 7) invasive breast tumors, 8) node-negative cancers, 9) invasive tumors ≤10 mm, 10) ratio of surgery for benign vs malignant lesions, and 11) breast-conserving therapy. DESCRIPTIVE DATA: As of August 10, 2015, the database included data from 888,151 unique women who have been invited to one or more screenings. In the first three screening rounds, 641,835 (round I), 580,452 (round II), and 641,938 (round III) women were invited, and participation increased from 79% to 84%. In the third round, 79% of the screened women received their result within ten working days, 2.7% of the screened women were recalled for further diagnostics, 82% of the women operated for invasive carcinomas were node negative, and 40% of the women had the tumor size of ≤10 mm. CONCLUSION: The DKMS has successfully evaluated the quality of the nationwide Danish breast cancer screening program against international quality standards. The quality of the Danish program complies well with international standards particularly as regards to the clinical aspects

    Birth weight, childhood body mass index, and height in relation to mammographic density and breast cancer:a register-based cohort study

    No full text
    INTRODUCTION: High breast density, a strong predictor of breast cancer may be determined early in life. Childhood anthropometric factors have been related to breast cancer and breast density, but rarely simultaneously. We examined whether mammographic density (MD) mediates an association of birth weight, childhood body mass index (BMI), and height with the risk of breast cancer. METHODS: 13,572 women (50 to 69 years) in the Copenhagen mammography screening program (1991 through 2001) with childhood anthropometric measurements in the Copenhagen School Health Records Register were followed for breast cancer until 2010. With logistic and Cox regression models, we investigated associations among birth weight, height, and BMI at ages 7 to 13 years with MD (mixed/dense or fatty) and breast cancer, respectively. RESULTS: 8,194 (60.4%) women had mixed/dense breasts, and 716 (5.3%) developed breast cancer. Childhood BMI was significantly inversely related to having mixed/dense breasts at all ages, with odds ratios (95% confidence intervals) ranging from 0.69 (0.66 to 0.72) at age 7 to 0.56 (0.53 to 0.58) at age 13, per one-unit increase in z-score. No statistically significant associations were detected between birth weight and MD, height and MD, or birth weight and breast cancer risk. BMI was inversely associated with breast cancer, with hazard ratios of 0.91 (0.83 to 0.99) at age 7 and 0.92 (0.84 to 1.00) at age 13, whereas height was positively associated with breast cancer risk (age 7, 1.06 (0.98 to 1.14) and age 13, 1.08 (1.00 to 1.16)). After additional adjustment for MD, associations of BMI with breast cancer diminished (age 7, 0.97 (0.88 to 1.06) and age 13, 1.01 (0.93 to 1.11)), but remained with height (age 7, 1.06 (0.99 to 1.15) and age 13, 1.09 (1.01 to 1.17)). CONCLUSIONS: Among women 50 years and older, childhood body fatness was inversely associated with the breast cancer risk, possibly via a mechanism mediated by MD, at least partially. Childhood tallness was positively associated with breast cancer risk, seemingly via a pathway independent of MD. Birth weight was not associated with MD or breast cancer in this age group
    corecore