3,447 research outputs found
The Virtual Element Method with curved edges
In this paper we initiate the investigation of Virtual Elements with curved
faces. We consider the case of a fixed curved boundary in two dimensions, as it
happens in the approximation of problems posed on a curved domain or with a
curved interface. While an approximation of the domain with polygons leads, for
degree of accuracy , to a sub-optimal rate of convergence, we show
(both theoretically and numerically) that the proposed curved VEM lead to an
optimal rate of convergence
Virtual Elements for the Navier-Stokes problem on polygonal meshes
A family of Virtual Element Methods for the 2D Navier-Stokes equations is
proposed and analysed. The schemes provide a discrete velocity field which is
point-wise divergence-free. A rigorous error analysis is developed, showing
that the methods are stable and optimally convergent. Several numerical tests
are presented, confirming the theoretical predictions. A comparison with some
mixed finite elements is also performed
A parallel multigrid solver for multi-patch Isogeometric Analysis
Isogeometric Analysis (IgA) is a framework for setting up spline-based
discretizations of partial differential equations, which has been introduced
around a decade ago and has gained much attention since then. If large spline
degrees are considered, one obtains the approximation power of a high-order
method, but the number of degrees of freedom behaves like for a low-order
method. One important ingredient to use a discretization with large spline
degree, is a robust and preferably parallelizable solver. While numerical
evidence shows that multigrid solvers with standard smoothers (like Gauss
Seidel) does not perform well if the spline degree is increased, the multigrid
solvers proposed by the authors and their co-workers proved to behave optimal
both in the grid size and the spline degree. In the present paper, the authors
want to show that those solvers are parallelizable and that they scale well in
a parallel environment.Comment: The first author would like to thank the Austrian Science Fund (FWF)
for the financial support through the DK W1214-04, while the second author
was supported by the FWF grant NFN S117-0
Robust Finite Elements for linearized Magnetohydrodynamics
We introduce a pressure robust Finite Element Method for the linearized
Magnetohydrodynamics equations in three space dimensions, which is provably
quasi-robust also in the presence of high fluid and magnetic Reynolds numbers.
The proposed scheme uses a non-conforming BDM approach with suitable DG terms
for the fluid part, combined with an -conforming choice for the magnetic
fluxes. The method introduces also a specific CIP-type stabilization associated
to the coupling terms. Finally, the theoretical result are further validated by
numerical experiments
- …