3,447 research outputs found

    The Virtual Element Method with curved edges

    Full text link
    In this paper we initiate the investigation of Virtual Elements with curved faces. We consider the case of a fixed curved boundary in two dimensions, as it happens in the approximation of problems posed on a curved domain or with a curved interface. While an approximation of the domain with polygons leads, for degree of accuracy k≥2k \geq 2, to a sub-optimal rate of convergence, we show (both theoretically and numerically) that the proposed curved VEM lead to an optimal rate of convergence

    Virtual Elements for the Navier-Stokes problem on polygonal meshes

    Get PDF
    A family of Virtual Element Methods for the 2D Navier-Stokes equations is proposed and analysed. The schemes provide a discrete velocity field which is point-wise divergence-free. A rigorous error analysis is developed, showing that the methods are stable and optimally convergent. Several numerical tests are presented, confirming the theoretical predictions. A comparison with some mixed finite elements is also performed

    A parallel multigrid solver for multi-patch Isogeometric Analysis

    Full text link
    Isogeometric Analysis (IgA) is a framework for setting up spline-based discretizations of partial differential equations, which has been introduced around a decade ago and has gained much attention since then. If large spline degrees are considered, one obtains the approximation power of a high-order method, but the number of degrees of freedom behaves like for a low-order method. One important ingredient to use a discretization with large spline degree, is a robust and preferably parallelizable solver. While numerical evidence shows that multigrid solvers with standard smoothers (like Gauss Seidel) does not perform well if the spline degree is increased, the multigrid solvers proposed by the authors and their co-workers proved to behave optimal both in the grid size and the spline degree. In the present paper, the authors want to show that those solvers are parallelizable and that they scale well in a parallel environment.Comment: The first author would like to thank the Austrian Science Fund (FWF) for the financial support through the DK W1214-04, while the second author was supported by the FWF grant NFN S117-0

    Robust Finite Elements for linearized Magnetohydrodynamics

    Full text link
    We introduce a pressure robust Finite Element Method for the linearized Magnetohydrodynamics equations in three space dimensions, which is provably quasi-robust also in the presence of high fluid and magnetic Reynolds numbers. The proposed scheme uses a non-conforming BDM approach with suitable DG terms for the fluid part, combined with an H1H^1-conforming choice for the magnetic fluxes. The method introduces also a specific CIP-type stabilization associated to the coupling terms. Finally, the theoretical result are further validated by numerical experiments
    • …
    corecore