4 research outputs found

    Leveraging International Influenza Surveillance Systems and Programs during the COVID-19 Pandemic.

    Get PDF
    A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential

    Community-Associated Methicillin-Resistant Staphylococcus aureus Epidemic Clone USA300 in Isolates from Florida and Washington

    No full text
    We examined 299 methicillin-resistant, community-associated Staphylococcus aureus isolates from Florida and Washington State for the presence of the USA300 epidemic clone. Pulsed-field gel electrophoresis demonstrated the epidemic clone in 43% of our S. aureus strains and in isolates from both states. The majority of the USA300 isolates (88%) were from wound infections

    Two-Year Study Evaluating the Potential Loss of Methicillin Resistance in a Methicillin-Resistant Staphylococcus aureus Culture Collectionâ–¿

    No full text
    A reported loss of mecA prompted us to monitor 360 cryostocked methicillin-resistant Staphylococcus aureus strains for stability. Concurrently, 14 well-characterized strains were stored in a Microbank preservation system and subjected to multiple freeze-thaw events. There were no significant declines in the methicillin-resistant populations with either method over a two-year period

    Bacillus anthracis Virulent Plasmid pX02 Genes Found in Large Plasmids of Two Other Bacillus Species

    Get PDF
    In order to cause the disease anthrax, Bacillus anthracis requires two plasmids, pX01 and pX02, which carry toxin and capsule genes, respectively, that are used as genetic targets in the laboratory detection of the bacterium. Clinical, forensic, and environmental samples that test positive by PCR protocols established by the Centers for Disease Control and Prevention for B. anthracis are considered to be potentially B. anthracis until confirmed by culture and a secondary battery of tests. We report the presence of 10 genes (acpA, capA, capB, capC, capR, capD, IS1627, ORF 48, ORF 61, and repA) and the sequence for the capsule promoter normally found on pX02 in Bacillus circulans and a Bacillus species closely related to Bacillus luciferensis. Tests revealed these sequences to be present on a large plasmid in each isolate. The 11 sequences consistently matched to B. anthracis plasmid pX02, GenBank accession numbers AF188935.1, AE011191.1, and AE017335.3. The percent nucleotide identities for capD and the capsule promoter were 99.9% and 99.7%, respectively, and for the remaining nine genes, the nucleotide identity was 100% for both isolates. The presence of these genes, which are usually associated with the pX02 plasmid, in two soil Bacillus species unrelated to B. anthracis alerts us to the necessity of identifying additional sequences that will signal the presence of B. anthracis in clinical, forensic, and environmental samples
    corecore