10 research outputs found
Evaluation of a standardized test protocol to measure wheelchair-specific anaerobic and aerobic exercise capacity in healthy novices on an instrumented roller ergometer
This study aims to evaluate whether a test protocol with standardized and individualized resistance settings leads to valid wheelchair Wingate tests (WAnT) and graded exercise tests (GXT) in healthy novices. Twenty able-bodied individuals (10M/10F, age 23 ± 2 years, body mass 72 ± 11 kg) performed an isometric strength test, sprint test, WAnT and GXT on a wheelchair ergometer. Using a previously developed set of regression equations, individuals' isometric strength outcome was used to estimate the WAnT result (P30est), from which an effective individual WAnT resistance was derived. The subsequently measured WAnT outcome (P30meas) was used to estimate the GXT outcome (POpeakest) and to scale the individual GXT resistance steps. Estimated and measured outcomes were compared. The WAnT protocol was considered valid when maximal velocity did not exceed 3 m·s-1; the GXT protocol was considered valid when test duration was 8-12 min. P30est did not significantly differ from P30meas, while one participant did not have a valid WanT, as maximal velocity exceeded 3 m·s-1. POpeakest was 10% higher than POpeakmeas, and six participants did not reach a valid GXT: five participants had a test duration under 8 min and one participant over 12 min. The isometric strength test can be used to individually scale the WAnT protocol. The WAnT outcome scaled the protocol for the GXT less accurately, resulting in mostly shorter-than-desired test durations. In conclusion, the evaluated standardized and individualized test protocol was valid for the WAnT but less valid for the GXT among a group of novices. Before implementing the standardized individual test protocol on a broader scale, e.g. among paralympic athletes, it should be evaluated among different athletic wheelchair-dependent populations
Rehabilitation:mobility, exercise & sports; a critical position stand on current and future research perspectives
Background Human movement, rehabilitation, and allied sciences have embraced their ambitions within the cycle of “RehabMove” congresses over the past 30 years. This combination of disciplines and collaborations in the Netherlands has tried to provide answers to questions in the fields of rehabilitation and adapted sports, while simultaneously generating new questions and challenges. These research questions help us to further deepen our understanding of (impaired) human movement and functioning, with and without supportive technologies, and stress the importance of continued multidisciplinary (inter)national collaboration. Methods This position stand provides answers that were conceived by the authors in a creative process underlining the preparation of the 6th RehabMove Congress. Results The take-home message of the RehabMove2018 Congress is a plea for continued multidisciplinary research in the fields of rehabilitation and adapted sports. This should be aimed at more individualized notions of human functioning, practice, and training, but also of performance, improved supportive technology, and appropriate “human and technology asset management” at both individual and organization levels and over the lifespan. Conclusions With this, we anticipate to support the development of rehabilitation sciences and technology and to stimulate the use of rehabilitation notions in general health care. We also hope to help ensure a stronger embodiment of preventive and lifestyle medicine in rehabilitation practice. Indeed, general health care and rehabilitation practice require a healthy and active lifestyle management and research agenda in the context of primary, secondary, and tertiary prevention. IMPLICATIONS FOR REHABILITATION Continued multidisciplinary (international) collaboration will stimulate the development of rehabilitation and human movement sciences. Notions from “human and technology asset management and ergonomics” are fundamental to rehabilitation practice and research. The rehabilitation concept will further merge into general health care and the quality there-off
A newly developed hand rim for wheelchair tennis improves propulsion technique and efficiency in able-bodied novices
A new wheelchair tennis hand rim was developed, having a larger contact area and higher friction. How does this new hand rim compare to a regular hand rim regarding submaximal propulsion with a tennis racket during practice in novices? Twenty-four able-bodied novices (12 Regular Rim, 12 New Rim) completed a one-day experiment: pre-test, three practice-sessions and a post-test of 3 × 4 min each on a wheelchair ergometer (1.11 m/s, 7W). The New Rim group compared to the Regular Rim group, had a lower negative work per cycle (-0.83J vs. -2.06J, p = 0.01) at the post-test. There was a significantly larger increase in mechanical efficiency between the pre- and post-test in the New Rim group (2.3-3.4% vs. 2.1-2.5%, p = 0.02) compared to the Regular Rim group. The new rim led to a more ergonomic propulsion technique, with a reduction in negative power and higher mechanical efficiency between the pre- and post-test at submaximal propulsion
Toward a Standardized and Individualized Laboratory-Based Protocol for Wheelchair-Specific Exercise Capacity Testing in Wheelchair Athletes: A Scoping Review
Previous studies on handrim wheelchair-specific (an)aerobic exercise capacity in wheelchair athletes have used a diversity of participants, equipment, and protocols. Therefore, test results are difficult to compare among studies. The first aim of this scoping review is to provide an overview of the populations studied, the equipment and protocols used, and the reported outcomes from all laboratory-based studies on wheelchair-specific exercise capacity in wheelchair athletes. The second aim is to synthesize these findings into a standardized, yet individualized protocol. A scoping literature search resulted in 10 anaerobic and 38 aerobic protocols. A large variety in equipment, protocol design, and reported outcomes was found. Studies that systematically investigated the influence of protocol features are lacking, which makes it difficult to interpret and compare test outcomes among the heterogeneous group of wheelchair athletes. Protocol design was often dependent on a priori participant knowledge. However, specific guidelines for individualization were missing. However, the common protocol features of the different studies were united into guidelines that could be followed when performing standardized and individualized wheelchair-specific exercise capacity tests in wheelchair athletes. Together with guidelines regarding reporting of participant characteristics, used equipment, and outcome measures, we hope to work toward more international agreement in future testing
Toward a Standardized and Individualized Laboratory-Based Protocol for Wheelchair-Specific Exercise Capacity Testing in Wheelchair Athletes:A Scoping Review
Previous studies on handrim wheelchair-specific (an)aerobic exercise capacity in wheelchair athletes have used a diversity of participants, equipment, and protocols. Therefore, test results are difficult to compare among studies. The first aim of this scoping review is to provide an overview of the populations studied, the equipment and protocols used, and the reported outcomes from all laboratory-based studies on wheelchair-specific exercise capacity in wheelchair athletes. The second aim is to synthesize these findings into a standardized, yet individualized protocol. A scoping literature search resulted in 10 anaerobic and 38 aerobic protocols. A large variety in equipment, protocol design, and reported outcomes was found. Studies that systematically investigated the influence of protocol features are lacking, which makes it difficult to interpret and compare test outcomes among the heterogeneous group of wheelchair athletes. Protocol design was often dependent on a priori participant knowledge. However, specific guidelines for individualization were missing. However, the common protocol features of the different studies were united into guidelines that could be followed when performing standardized and individualized wheelchair-specific exercise capacity tests in wheelchair athletes. Together with guidelines regarding reporting of participant characteristics, used equipment, and outcome measures, we hope to work toward more international agreement in future testing
Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions
Background: Handrim wheelchair propulsion is often assessed in the laboratory on treadmills (TM) or ergometers (WE), under the assumption that they relate to regular overground (OG) propulsion. However, little is known about the agreement of data obtained from TM, WE, and OG propulsion under standardized conditions. The current study aimed to standardize velocity and power output among these three modalities to consequently compare obtained physiological and biomechanical outcome parameters. Methods: Seventeen able-bodied participants performed two submaximal practice sessions before taking part in a measurement session consisting of 3 × 4 min of submaximal wheelchair propulsion in each of the different modalities. Power output and speed for TM and WE propulsion were matched with OG propulsion, making them (mechanically) as equal as possible. Physiological data and propulsion kinetics were recorded with a spirometer and a 3D measurement wheel, respectively. Results: Agreement among conditions was moderate to good for most outcome variables. However, heart rate was significantly higher in OG propulsion than in the TM condition. Push time and contact angle were smaller and fraction of effective force was higher on the WE when compared to OG/TM propulsion. Participants used a larger cycle time and more negative work per cycle in the OG condition. A continuous analysis using statistical parametric mapping showed a lower torque profile in the start of the push phase for TM propulsion versus OG/WE propulsion. Total force was higher during the start of the push phase for the OG conditions when compared to TM/WE propulsion. Conclusions: Physiological and biomechanical outcomes in general are similar, but possible differences between modalities exist, even after controlling for power output using conventional techniques. Further efforts towards increasing the ecological validity of lab-based equipment is advised and the possible impact of these differences -if at all- in (clinical) practice should be evaluated.Biomechanical Engineerin
Bilateral scapular kinematics, asymmetries and shoulder pain in wheelchair athletes
Background: Shoulder pain is the most common complaint for wheelchair athletes. Scapular orientation and dyskinesia are thought to be associated with shoulder pathology, yet no previous studies have examined the bilateral scapula kinematics of wheelchair athletes during propulsion. Research question: To examine bilateral scapular kinematics of highly trained wheelchair rugby (WR) players and any associations with self-reported shoulder pain during everyday wheelchair propulsion. Methods: Ten WR players (5 with shoulder pain, 5 without) performed 2 x 3-minute bouts of exercise in their everyday wheelchair on a wheelchair ergometer at two sub-maximal speeds (3 and 6 km h(-1)). During the final minute, 3D kinematic data were collected at 100 Hz to describe scapulothoracic motion relative to each propulsion cycle. Instantaneous asymmetries in scapular orientation between dominant and non-dominant sides were also reported. Differences in scapular kinematics and propulsion asymmetries were compared across shoulders symptomatic and asymptomatic of pain. Results: An internally rotated, upwardly rotated and anteriorly tilted scapula was common during wheelchair propulsion and asymmetries Significance: Scapular asymmetries are exhibited by wheelchair athletes during wheelchair propulsion, yet these were not exacerbated by increased speed and had limited associations to shoulder pain. This suggests that propulsion kinematics of highly trained athletes may not be the primary cause of pain experienced by this population
Six inertial measurement unit-based components describe wheelchair mobility performance during wheelchair tennis matches
The aim of this explorative study was to determine the key inertial measurement unit-based wheelchair mobility performance components during a wheelchair tennis match. A total of 64 wheelchair tennis matches were played by 15 wheelchair tennis players (6 women, 5 men, 4 juniors). All individual tennis wheelchairs were instrumented with inertial measurement units, two on the axes of the wheels and one on the frame. A total of 48 potentially relevant wheelchair tennis outcome variables were initially extracted from the sensor signals, based on previous wheelchair sports research and the input of wheelchair tennis experts (coaches, embedded scientists). A principal component analysis was used to reduce this set of variables to the most relevant outcomes for wheelchair tennis mobility. Results showed that wheelchair mobility performance in wheelchair tennis can be described by six components: rotations to racket side in (1) curves and (2) turns; (3) linear accelerations; (4) rotations to non-racket side in (4) turns and (5) curves; and finally, (6) linear velocities. One or two outcome variables per component were selected to allow an easier interpretation of results. These key outcome variables can be used to adequately describe the wheelchair mobility performance aspect of wheelchair tennis during a wheelchair tennis match and can be monitored during training.</p
Skill acquisition of manual wheelchair propulsion due to implicit motor learning
Objective. To study wheelchair skill acquisition in handrim wheelchair propulsion on a motor-driven treadmill in able-bodied male novices to simulate early rehabilitation. Major content of paper. Mechanical efficiency (ME) is a measure to evaluate the performance of the wheelchair-user combination and is sensitive to changes in the wheelchair-user interface as well as to skill acquisition. ME is defined as the ratio between external power output and the energy consumption. When the wheelchair configuration is kept constant, changes in efficiency can be attributed to the user. Changes in propulsion technique due to continued, often implicit, motor learning account for a higher ME. The changes in ME and propulsion technique due to the implicit motor learning process were studied in a three week learning experiment (3 times a week for 8 min at 0.21 W/kg) with 9 able-bodied subjects, novice to handrim wheelchair propulsion, simulating early rehabilitation. No instructions on technique or feedback on results were given. Methods. Instrumented wheels allowed for measuring three-dimensional forces and torques on the handrim in real life situations. Combining these wheels during treadmill wheelchair propulsion with analysis of energy cost gives the possibility to compare physiological parameters to the biomechanics of wheelchair propulsion over the learning period. From the force data different propulsion technique parameters e.g. timing (frequency, push time, angle) and force application (force magnitude and direction, periods of negative power) were derived. Results. Already within the first 12 minutes changes in timing and force production occurred. Peak torques were reduced, work per cycle increased, while push frequency decreased, at a stable power output and speed of the treadmill. Over the three weeks of practice propulsion technique kept changing and was accompanied with an increase in ME. Conclusion. Results suggest skill acquisition because of motor learning by all users in the group. The rise in ME seems logically related to propulsion technique, but is not yet fully understood. More insight in motor learning and skill acquisition will contribute to understanding and optimizing rehabilitation strategies in the light of wheelchair provision in early rehabilitation
An inertial measurement unit based method to estimate hip and knee joint kinematics in team sport athletes on the field
Current athlete monitoring practice in team sports is mainly based on positional data measured by global positioning or local positioning systems. The disadvantage of these measurement systems is that they do not register lower extremity kinematics, which could be a useful measure for identifying injury-risk factors. Rapid development in sensor technology may overcome the limitations of the current measurement systems. With inertial measurement units (IMUs) securely fixed to body segments, sensor fusion algorithms and a biomechanical model, joint kinematics could be estimated. The main purpose of this article is to demonstrate a sensor setup for estimating hip and knee joint kinematics of team sport athletes in the field. Five male subjects (age 22.5 ± 2.1 years; body mass 77.0 ± 3.8 kg; height 184.3 ± 5.2 cm; training experience 15.3 ± 4.8 years) performed a maximal 30-meter linear sprint. Hip and knee joint angles and angular velocities were obtained by five IMUs placed on the pelvis, both thighs and both shanks. Hip angles ranged from 195° (± 8°) extension to 100.5° (± 8°) flexion and knee angles ranged from 168.6° (± 12°) minimal flexion and 62.8° (± 12°) maximal flexion. Furthermore, hip angular velocity ranged between 802.6 °·s-1 (± 192 °·s-1) and-674.9 °·s-1 (± 130 °·s-1). Knee angular velocity ranged between 1155.9 °·s-1 (± 200 °·s-1) and-1208.2 °·s-1 (± 264 °·s-1). The sensor setup has been validated and could provide additional information with regard to athlete monitoring in the field. This may help professionals in a daily sports setting to evaluate their training programs, aiming to reduce injury and optimize performance.Electronic InstrumentationEmerging MaterialsBiomechatronics & Human-Machine Contro