31 research outputs found

    Semi Mature Blood Dendritic Cells Exist in Patients with Ductal Pancreatic Adenocarcinoma Owing to Inflammatory Factors Released from the Tumor

    No full text
    Background: Much evidence exists regarding the fact that blood DCs, both myeloid DCs (MDCs) and plasmacytoid DCs (PDCs), are negatively affected in different types of cancer, with both reduced numbers and impaired functionality. Functional impairment of DCs in patients with pancreatic ductal adenocarcinoma (PDAC), may contribute to the poor clinical outcome. The aim of this study was to examine the effects PDAC had on blood DCs and elucidate the underlying mechanism responsible for the DC impairment. Methodology/Principal Findings: We examined the systemic influence PDAC exerted on blood DCs by ex vivo measuring numerous activation and maturation markers expressed on these cells. Furthermore, the effect patient plasma and the inflammatory factors CXCL8 and PGE(2) had on purified MDCs and PDCs from healthy donors was assessed and compared to the DCs existing in PDAC patients. We found a partial maturation of the blood MDCs and PDCs in PDAC patients with significantly enhanced expression of CD83, CD40, B7H3, PDL-1, CCR6, and CCR7 and decreased expression of ICOSL, and DCIR. These changes lead to impairment in their immunostimulatory function. Furthermore, chronic pancreatitis gave rise to DCs with similar semi-mature phenotype as seen in PDAC. Low expression of ICOSL was associated with poor prognosis. We found that the mechanism underlying this semi-maturation of DCs was inflammatory factors existing in the PDAC patients plasma. Of note, PGE2, which is elevated PDAC patient plasma, was one contributing factor to the changes seen in MDCs and PDCs phenotype. Conclusion/Significance: Our findings point to a role for the systemic inflammation in transforming blood MDCs and PDCs into semi-mature cells in PDAC patients and we show a correlation between maturation status and clinical outcome. Thus, means to preserve a functional blood DC compartment in PDAC patients by diminishing the inflammation could facilitate their ability to control the disease and improve survival.Original Publication: Vegard Tjomsland, Anna Spångeus, Per Sandström, Kurt Borch, Davorka Messmer and Marie Larsson, Semi Mature Blood Dendritic Cells Exist in Patients with Ductal Pancreatic Adenocarcinoma Owing to Inflammatory Factors Released from the Tumor, 2010, PLOS ONE, (5), 10. http://dx.doi.org/10.1371/journal.pone.0013441 Licensee: Public Library of Science (PLoS) http://www.plos.org/</p

    The Desmoplastic Stroma Plays an Essential Role in the Accumulation and Modulation of Infiltrated Immune Cells in Pancreatic Adenocarcinoma

    Get PDF
    Tumor microenvironment is composed of tumor cells, fibroblasts, and infiltrating immune cells, which all work together and create an inflammatory environment favoring tumor progression. The present study aimed to investigate the role of the desmoplastic stroma in pancreatic ductal adenocarcinoma (PDAC) regarding expression of inflammatory factors and infiltration of immune cells and their impact on the clinical outcome. The PDAC tissues examined expressed significantly increased levels of immunomodulatory and chemotactic factors (IL-6, TGFβ, IDO, COX-2, CCL2, and CCL20) and immune cell-specific markers corresponding to macrophages, myeloid, and plasmacytoid dendritic cells (DCs) as compared to controls. Furthermore, short-time survivors had the lowest levels of DC markers. Immunostainings indicated that the different immune cells and inflammatory factors are mainly localized to the desmoplastic stroma. Therapies modulating the inflammatory tumor microenvironment to promote the attraction of DCs and differentiation of monocytes into functional DCs might improve the survival of PDAC patients

    Технологическая подготовка производства деталей жатки для уборки зерновых культур с разработкой технологического процесса механической обработки детали подвеска КЗР 1502603 и алгоритма оптимизации процесса магнитно-электрического шлифования покрытий

    Get PDF
    The interplay between the tumor cells and the surrounding stroma creates inflammation, which promotes tumor growth and spread. The inflammation is a hallmark for pancreatic adenocarcinoma (PDAC) and is to high extent driven by IL-1α. IL-1α is expressed and secreted by the tumor cells and exerting its effect on the stroma, i.e. cancer associated fibroblasts (CAF), which in turn produce massive amount of inflammatory and immune regulatory factors. IL-1 induces activation of transcription factors such as nuclear factor-κβ (NF-κβ), but also activator protein 1 (AP-1) via the small G-protein Ras. Dysregulation of Ras pathways are common in cancer as this oncogene is the most frequently mutated in many cancers. In contrast, the signaling events leading up to the expression of IL-1α by tumor cells are not well elucidated. Our aim was to examine the signaling cascade involved in the induction of IL-1α expression in PDAC. We found p38MAPK, activated by the K-Ras signaling pathway, to be involved in the expression of IL-1α by PDAC as blocking this pathway decreased both the gene and protein expression of IL-1α. Blockage of the P38MAPK signaling in PDAC also dampened the ability of the tumor cell to induce inflammation in CAFs. In addition, the IL-1α autocrine signaling regulated the migratory capacity of PDAC cells. Taken together, the blockage of signaling pathways leading to IL-1α expression and/or neutralization of IL-1α in the PDAC microenvironment should be taken into consideration as possible treatment or complement to existing treatment of this cancer.Funding Agencies|Swedish Research Council|AI52731|VINNMER (Vinnova)||Medical Research Council of Southeast Sweden||Swedish Society of Medicine||</p

    Studies of the tumor microenvironment : Local and systemic effects exerted by the cross-talk between tumor and stroma cells in pancreatic cancer

    No full text
    Pancreatic cancer is one of the most lethal cancers and despite all research efforts the last 50 years, there are still no effective therapy for this terrible disease. Until quite recently most research in the field of pancreatic duct adenocarcinoma (PDAC) was focused on the tumor cells and mechanisms essential for their proliferation and survival. However, the tumor does not only consist of tumor cells, rather a combination of tumor cells and numerous stroma cell types, i.e. the tumor microenvironment. The tumor cells have developed the ability to activate the surrounding cells to produce factors important for the progression of the tumor. Cancer associated fibroblasts (CAFs) are the major stroma component and as much as 70% of the total PDAC tumor mass consists of these cells. In this thesis I have investigated the mechanisms involved in the cross-talk between tumor cells and CAFs and distinguished the local and systemic effects of this communication. Tumor derived IL-1α was identified as an important factor creating the inflammatory profile seen in CAFs. In PDAC patients, IL-1α was detected in 90% of the tumors and high expression was associated with poor clinical outcome. Moreover, the PDAC tumors had elevated expression levels of many inflammatory factors that were induced in CAFs by the tumor derived IL-1α in vitro. Consequently, this high expression of inflammatory factors in CAFs will attract immune cells including tumor associated macrophages (TAMs), dendritic cells (DCs), and CD8+ T cells. This indicates an immune suppressive role of CAFs, protecting the tumor cells by acting as decoy targets for immune cells homing into the tumor. The inflammatory factors produced in the PDAC microenvironment did not only affect the infiltrating immune cells, but had also systemic effects that included decreased levels of blood DCs in PDAC patients. Furthermore, these myeloid and plasmacytoid DCs were partly activated and had a semi mature phenotype and impaired immunostimulatory function. Low levels of blood DCs were direct associated with poor patient prognosis and the same was seen for low expression of ICOSL by the DCs. The findings presented in this thesis indicate an essential role for the cross-talk between tumor cells and stroma in the production of tumor  promoting factors. Treatment of PDAC patients with drugs that target the IL-1α signaling pathway could prevent the communication between these cells, thus reduce the amount of inflammatory factors both locally and systemically. Altogether, our findings support the idea that neutralization of the IL-1α signaling molecule could be a promising therapy for pancreatic cancer. The findings presented in this thesis indicate an essential role for the cross-talk between tumor cells and stroma in the production of tumor promoting factors. Treatment of PDAC patients with drugs that target the IL-1α signaling pathway could prevent the communication between these cells, thus reduce the amount of inflammatory factors both locally and systemically. Altogether, our findings support the idea that neutralization of the IL-1α signaling molecule could be a promising therapy for pancreatic cancer.Mindre än 5% av patienterna som drabbas av cancer i bukspottkörteln förväntas överleva i mer än fem år. De typiska symtomen kommer sent och sjukdomen framskrider snabbt. Några av de riskfaktorer som identifierats är tobaksrökning, fetma och typ 2 diabetes. Forskningen har hittills siktat in sig på tumörcellerna och de mekanismer de använder för att överleva och föröka sig. Men en tumör innehåller också normala kroppsceller och vid bukspottkörtelcancer kan så mycket som 70 procent bestå av i sig ofarliga bindvävsceller. Miljön i tumören skapas av samspelet mellan dessa celltyper. De cancerceller som är bäst på att utnyttja omgivningen för sin tillväxt fortlever och för sina egenskaper vidare. En sådan egenskap är att kunna manipulera bindvävsceller till att producera signalsubstanser och tillväxtfaktorer som gynnar tumören. Mekanismerna bakom denna kommunikation har studerats och ett viktigt fynd var att tumörcellerna producerar signalämnet interleukin 1-alpha (IL-1a). Detta protein upptäcktes i 90 procent av de undersökta tumörerna, och var kopplat till dålig prognos hos patienterna. Signalen via IL-1a sätter igång tillverkningen av substanser som behövs för nybildning och tillväxt av blodkärl, i sin tur en förutsättning för att tumören ska leva vidare och växa. Proteinet stimulerar också celldelning i tumören, bidrar till att lura kroppens immunförsvar och underlättar spridning av dottertumörer till andra delar av kroppen. När vi slår ut signaleringen kan tumörcellerna inte längre påverka bindvävscellerna lika effektivt, och således minskar förekomsten av flera faktorer som gynnar tumörtillväxten. IL-1a kan därför vara en lovande kandidat att utforska vidare för framtida som ett läkemedel mot bukspottkörtelcancer

    Opponent

    No full text
    Cover: Ilustration of the tumor microenvironment in pancreatic cancer. Cover picture and all ilustrations included in the thesis was performed by Rada Chakarov

    Algorithms and their visualization

    Get PDF
    Bakalaura darbā tika pētīts, kādām prasībām vajadzētu atbilst labam algoritmu vizualizācijas rīkam. Papildus tika pētīts kādi algoritmi tiek apskatīti Latvijas Universitātē bakalaura studiju programmā "Datorzinātnes" uz doto brīdi un šie algoritmi tika izstrādāti vizualizācijas rīkā, kura izstrādes laikā tika pielietotas mācību laikā iegūtās praktiskās zināšanas tīmekļa izstrādē. Algoritmu vizualizācijas rīks ir izveidots tiešsaistē tāpēc, lai tas būtu pieejams studentiem un pasniedzējiem visu diennakti bez nepieciešamības aizņemt papildus atmiņu ierīcēs. Šis rīks var būt noderīgs ikvienam, kas interesējas par algoritmiem, jo īpaši datorzinātņu studentiem, kuri vēlas uzlabot savus rezultātus, un universitātes pasniedzējiem, kuri vēlas uzlabot datu struktūru un algoritmu kursu pielietojot šāda veida mācību līdzekli. Darba pamatā ir izvēlēti dažādi kārtošanas algoritmi un datu uzglabāšana sarakstā.The bachelor's thesis investigated what requirements a good algorithm visualization tool should meet. In addition, it was studied which algorithms are considered in the University of Latvia in the Bachelor's study program “Computer science” at the moment and these algorithms were developed in a visualization tool, during the development of which the practical knowledge acquired during the studies was used in web development. In addition, useful sources of information in the context of specific agglomerations were searched for and added to the tool. The algorithm visualization tool is designed to be available to students and teachers around the clock without the need to take up additional memory on devices and to include more useful information sources and functions together in one place, while maintaining a simple user interface. This tool can be useful for anyone interested in algorithms, especially computer science students who want to improve their results, and university lecturers in an effort to improve the course of data structure and algorithms. The work is based on selected sorting algorithms and data storage in the list

    Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma

    Get PDF
    Background Several studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis. Methods Immunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [3H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [3H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR. Results Immunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis. Conclusions The present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic tumours. PGE2 exerts a suppressive effect on proliferation and fibrogenesis in pancreatic stellate cells. These effects of PGE2 are mediated by the cAMP pathway and suggest a role of EP2 receptors

    MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor

    Get PDF
    Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. a-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer
    corecore