128,125 research outputs found
Infinitely Many Strings in De Sitter Spacetime: Expanding and Oscillating Elliptic Function Solutions
The exact general evolution of circular strings in dimensional de
Sitter spacetime is described closely and completely in terms of elliptic
functions. The evolution depends on a constant parameter , related to the
string energy, and falls into three classes depending on whether
(oscillatory motion), (degenerated, hyperbolic motion) or
(unbounded motion). The novel feature here is that one single world-sheet
generically describes {\it infinitely many} (different and independent)
strings. The world-sheet time is an infinite-valued function of the
string physical time, each branch yields a different string. This has no
analogue in flat spacetime. We compute the string energy as a function of
the string proper size , and analyze it for the expanding and oscillating
strings. For expanding strings : even at ,
decreases for small and increases for large .
For an oscillating string , the average energy
over one oscillation period is expressed as a function of as a
complete elliptic integral of the third kind.Comment: 32 pages, Latex file, figures available from the authors under
request. LPTHE-PAR 93-5
Semi-Classical Quantization of Circular Strings in De Sitter and Anti De Sitter Spacetimes
We compute the {\it exact} equation of state of circular strings in the (2+1)
dimensional de Sitter (dS) and anti de Sitter (AdS) spacetimes, and analyze its
properties for the different (oscillating, contracting and expanding) strings.
The string equation of state has the perfect fluid form with
the pressure and energy expressed closely and completely in terms of elliptic
functions, the instantaneous coefficient depending on the elliptic
modulus. We semi-classically quantize the oscillating circular strings. The
string mass is being the Casimir operator,
of the -dS [-AdS] group, and is
the Hubble constant. We find \alpha'm^2_{\mbox{dS}}\approx 5.9n,\;(n\in N_0),
and a {\it finite} number of states N_{\mbox{dS}}\approx 0.17/(H^2\alpha') in
de Sitter spacetime; m^2_{\mbox{AdS}}\approx 4H^2n^2 (large ) and
N_{\mbox{AdS}}=\infty in anti de Sitter spacetime. The level spacing grows
with in AdS spacetime, while is approximately constant (although larger
than in Minkowski spacetime) in dS spacetime. The massive states in dS
spacetime decay through tunnel effect and the semi-classical decay probability
is computed. The semi-classical quantization of {\it exact} (circular) strings
and the canonical quantization of generic string perturbations around the
string center of mass strongly agree.Comment: Latex, 26 pages + 2 tables and 5 figures that can be obtained from
the authors on request. DEMIRM-Obs de Paris-9404
Mass Spectrum of Strings in Anti de Sitter Spacetime
We perform string quantization in anti de Sitter (AdS) spacetime. The string
motion is stable, oscillatory in time with real frequencies and the string size and energy are bounded. The
string fluctuations around the center of mass are well behaved. We find the
mass formula which is also well behaved in all regimes. There is an {\it
infinite} number of states with arbitrarily high mass in AdS (in de Sitter (dS)
there is a {\it finite} number of states only). The critical dimension at which
the graviton appears is as in de Sitter space. A cosmological constant
(whatever its sign) introduces a {\it fine structure} effect
(splitting of levels) in the mass spectrum at all states beyond the graviton.
The high mass spectrum changes drastically with respect to flat Minkowski
spacetime. For {\it
independent} of and the level spacing {\it grows} with the
eigenvalue of the number operator, The density of states grows
like \mbox{Exp}[(m/\sqrt{\mid\Lambda\mid}\;)^{1/2}] (instead of
\rho(m)\sim\mbox{Exp}[m\sqrt{\alpha'}] as in Minkowski space), thus {\it
discarding} the existence of a critical string temperature.
For the sake of completeness, we also study the quantum strings in the black
string background, where strings behave, in many respects, as in the ordinary
black hole backgrounds. The mass spectrum is equal to the mass spectrum in flat
Minkowski space.Comment: 31 pages, Latex, DEMIRM-Paris-9404
Yang--Baxter symmetry in integrable models: new light from the Bethe Ansatz solution
We show how any integrable 2D QFT enjoys the existence of infinitely many
non--abelian {\it conserved} charges satisfying a Yang--Baxter symmetry
algebra. These charges are generated by quantum monodromy operators and provide
a representation of deformed affine Lie algebras. We review and generalize
the work of de Vega, Eichenherr and Maillet on the bootstrap construction of
the quantum monodromy operators to the sine--Gordon (or massive Thirring)
model, where such operators do not possess a classical analogue. Within the
light--cone approach to the mT model, we explicitly compute the eigenvalues of
the six--vertex alternating transfer matrix \tau(\l) on a generic physical
state, through algebraic Bethe ansatz. In the thermodynamic limit \tau(\l)
turns out to be a two--valued periodic function. One determination generates
the local abelian charges, including energy and momentum, while the other
yields the abelian subalgebra of the (non--local) YB algebra. In particular,
the bootstrap results coincide with the ratio between the two determinations of
the lattice transfer matrix.Comment: 30 page
Doors into the Past
This post is part of a series featuring behind-the-scenes dispatches from our Pohanka Interns on the front lines of history this summer as interpreters, archivists, and preservationists. Seehere for the introduction to the series.
Submerged into the side of a grassy hill are two large white doors. As one looks at Fort Stevens from a distance, the doors seem misplaced. They randomly appear in a visitor’s line of sight as he/she examines the curves and dips of the earthwork before them. But these doors tell a much more interesting story than might be expected. To the left of these doors once stood the home of Elizabeth Proctor Thomas, a free African American woman, whose family originally owned eighty-eight acres of land in the Brightwood area of Washington, DC. At a time of few economic opportunities for the African American community, having this land was an important part of being self-sustaining. On this high ground, Thomas’s family farmed and sold parts of their holdings to relatives and other African American families. [excerpt
Collection Development and Plans for the Future!
It’s finally starting to feel like spring, and I’m finally starting to develop my final project for my internship! So much has happened in the past few weeks; I’ve had the opportunity to observe a music class that was writing a musical and I’ve been focusing on collection development for an Afrofuturism collection. Collection development was actually much more difficult than I had anticipated, especially since Afrofuturism is such a timely and emerging genre. In the few weeks since I began the project, a handful of new Afrofuturism titles have been published to much acclaim, and even older books that had been difficult to find began new printings. I don’t think I’ve ever explored a genre that had such exponential publishing growth on a daily basis! [excerpt
A Short Introduction
I’m a sophomore English w/ Writing Concentration and Women and Gender Studies Major, as well as a Japanese minor. When I was growing up, my public library was a place of refuge and exploration, but it I didn’t exactly consider a profession in the library sciences until recently. As I grew from a book-devouring child to a book-devouring teenager, I realized I was beginning to fall out of love with libraries, and I couldn’t exactly pen why. When I examined the root of my sudden falling out, I found a strange answer; my public and high school libraries didn’t have a very diverse catalog that represented my interest, and the protagonists and authors inside their books weren’t exactly reflective of who I was. But thankfully, that all changed when I came to college, and my love for the architecture and catalogue of Musselman Library was actually one of the reasons I chose to come here! [excerpt
- …