128,125 research outputs found

    Infinitely Many Strings in De Sitter Spacetime: Expanding and Oscillating Elliptic Function Solutions

    Full text link
    The exact general evolution of circular strings in 2+12+1 dimensional de Sitter spacetime is described closely and completely in terms of elliptic functions. The evolution depends on a constant parameter bb, related to the string energy, and falls into three classes depending on whether b<1/4b<1/4 (oscillatory motion), b=1/4b=1/4 (degenerated, hyperbolic motion) or b>1/4b>1/4 (unbounded motion). The novel feature here is that one single world-sheet generically describes {\it infinitely many} (different and independent) strings. The world-sheet time τ\tau is an infinite-valued function of the string physical time, each branch yields a different string. This has no analogue in flat spacetime. We compute the string energy EE as a function of the string proper size SS, and analyze it for the expanding and oscillating strings. For expanding strings (S˙>0)(\dot{S}>0): E0E\neq 0 even at S=0S=0, EE decreases for small SS and increases S\propto\hspace*{-1mm}S for large SS. For an oscillating string (0SSmax)(0\leq S\leq S_{max}), the average energy over one oscillation period is expressed as a function of SmaxS_{max} as a complete elliptic integral of the third kind.Comment: 32 pages, Latex file, figures available from the authors under request. LPTHE-PAR 93-5

    Semi-Classical Quantization of Circular Strings in De Sitter and Anti De Sitter Spacetimes

    Get PDF
    We compute the {\it exact} equation of state of circular strings in the (2+1) dimensional de Sitter (dS) and anti de Sitter (AdS) spacetimes, and analyze its properties for the different (oscillating, contracting and expanding) strings. The string equation of state has the perfect fluid form P=(γ1)E,P=(\gamma-1)E, with the pressure and energy expressed closely and completely in terms of elliptic functions, the instantaneous coefficient γ\gamma depending on the elliptic modulus. We semi-classically quantize the oscillating circular strings. The string mass is m=C/(πHα),  Cm=\sqrt{C}/(\pi H\alpha'),\;C being the Casimir operator, C=LμνLμν,C=-L_{\mu\nu}L^{\mu\nu}, of the O(3,1)O(3,1)-dS [O(2,2)O(2,2)-AdS] group, and HH is the Hubble constant. We find \alpha'm^2_{\mbox{dS}}\approx 5.9n,\;(n\in N_0), and a {\it finite} number of states N_{\mbox{dS}}\approx 0.17/(H^2\alpha') in de Sitter spacetime; m^2_{\mbox{AdS}}\approx 4H^2n^2 (large nN0n\in N_0) and N_{\mbox{AdS}}=\infty in anti de Sitter spacetime. The level spacing grows with nn in AdS spacetime, while is approximately constant (although larger than in Minkowski spacetime) in dS spacetime. The massive states in dS spacetime decay through tunnel effect and the semi-classical decay probability is computed. The semi-classical quantization of {\it exact} (circular) strings and the canonical quantization of generic string perturbations around the string center of mass strongly agree.Comment: Latex, 26 pages + 2 tables and 5 figures that can be obtained from the authors on request. DEMIRM-Obs de Paris-9404

    Mass Spectrum of Strings in Anti de Sitter Spacetime

    Get PDF
    We perform string quantization in anti de Sitter (AdS) spacetime. The string motion is stable, oscillatory in time with real frequencies ωn=n2+m2α2H2\omega_n= \sqrt{n^2+m^2\alpha'^2H^2} and the string size and energy are bounded. The string fluctuations around the center of mass are well behaved. We find the mass formula which is also well behaved in all regimes. There is an {\it infinite} number of states with arbitrarily high mass in AdS (in de Sitter (dS) there is a {\it finite} number of states only). The critical dimension at which the graviton appears is D=25,D=25, as in de Sitter space. A cosmological constant Λ0\Lambda\neq 0 (whatever its sign) introduces a {\it fine structure} effect (splitting of levels) in the mass spectrum at all states beyond the graviton. The high mass spectrum changes drastically with respect to flat Minkowski spacetime. For ΛΛN2,\Lambda\sim \mid\Lambda\mid N^2, {\it independent} of α,\alpha', and the level spacing {\it grows} with the eigenvalue of the number operator, N.N. The density of states ρ(m)\rho(m) grows like \mbox{Exp}[(m/\sqrt{\mid\Lambda\mid}\;)^{1/2}] (instead of \rho(m)\sim\mbox{Exp}[m\sqrt{\alpha'}] as in Minkowski space), thus {\it discarding} the existence of a critical string temperature. For the sake of completeness, we also study the quantum strings in the black string background, where strings behave, in many respects, as in the ordinary black hole backgrounds. The mass spectrum is equal to the mass spectrum in flat Minkowski space.Comment: 31 pages, Latex, DEMIRM-Paris-9404

    Yang--Baxter symmetry in integrable models: new light from the Bethe Ansatz solution

    Full text link
    We show how any integrable 2D QFT enjoys the existence of infinitely many non--abelian {\it conserved} charges satisfying a Yang--Baxter symmetry algebra. These charges are generated by quantum monodromy operators and provide a representation of qq-deformed affine Lie algebras. We review and generalize the work of de Vega, Eichenherr and Maillet on the bootstrap construction of the quantum monodromy operators to the sine--Gordon (or massive Thirring) model, where such operators do not possess a classical analogue. Within the light--cone approach to the mT model, we explicitly compute the eigenvalues of the six--vertex alternating transfer matrix \tau(\l) on a generic physical state, through algebraic Bethe ansatz. In the thermodynamic limit \tau(\l) turns out to be a two--valued periodic function. One determination generates the local abelian charges, including energy and momentum, while the other yields the abelian subalgebra of the (non--local) YB algebra. In particular, the bootstrap results coincide with the ratio between the two determinations of the lattice transfer matrix.Comment: 30 page

    Doors into the Past

    Full text link
    This post is part of a series featuring behind-the-scenes dispatches from our Pohanka Interns on the front lines of history this summer as interpreters, archivists, and preservationists. Seehere for the introduction to the series. Submerged into the side of a grassy hill are two large white doors. As one looks at Fort Stevens from a distance, the doors seem misplaced. They randomly appear in a visitor’s line of sight as he/she examines the curves and dips of the earthwork before them. But these doors tell a much more interesting story than might be expected. To the left of these doors once stood the home of Elizabeth Proctor Thomas, a free African American woman, whose family originally owned eighty-eight acres of land in the Brightwood area of Washington, DC. At a time of few economic opportunities for the African American community, having this land was an important part of being self-sustaining. On this high ground, Thomas’s family farmed and sold parts of their holdings to relatives and other African American families. [excerpt

    Collection Development and Plans for the Future!

    Full text link
    It’s finally starting to feel like spring, and I’m finally starting to develop my final project for my internship! So much has happened in the past few weeks; I’ve had the opportunity to observe a music class that was writing a musical and I’ve been focusing on collection development for an Afrofuturism collection. Collection development was actually much more difficult than I had anticipated, especially since Afrofuturism is such a timely and emerging genre. In the few weeks since I began the project, a handful of new Afrofuturism titles have been published to much acclaim, and even older books that had been difficult to find began new printings. I don’t think I’ve ever explored a genre that had such exponential publishing growth on a daily basis! [excerpt

    to be seen

    Full text link

    Witches

    Full text link

    A Short Introduction

    Full text link
    I’m a sophomore English w/ Writing Concentration and Women and Gender Studies Major, as well as a Japanese minor. When I was growing up, my public library was a place of refuge and exploration, but it I didn’t exactly consider a profession in the library sciences until recently. As I grew from a book-devouring child to a book-devouring teenager, I realized I was beginning to fall out of love with libraries, and I couldn’t exactly pen why. When I examined the root of my sudden falling out, I found a strange answer; my public and high school libraries didn’t have a very diverse catalog that represented my interest, and the protagonists and authors inside their books weren’t exactly reflective of who I was. But thankfully, that all changed when I came to college, and my love for the architecture and catalogue of Musselman Library was actually one of the reasons I chose to come here! [excerpt
    corecore