10,132 research outputs found
Semi-Classical Quantization of Circular Strings in De Sitter and Anti De Sitter Spacetimes
We compute the {\it exact} equation of state of circular strings in the (2+1)
dimensional de Sitter (dS) and anti de Sitter (AdS) spacetimes, and analyze its
properties for the different (oscillating, contracting and expanding) strings.
The string equation of state has the perfect fluid form with
the pressure and energy expressed closely and completely in terms of elliptic
functions, the instantaneous coefficient depending on the elliptic
modulus. We semi-classically quantize the oscillating circular strings. The
string mass is being the Casimir operator,
of the -dS [-AdS] group, and is
the Hubble constant. We find \alpha'm^2_{\mbox{dS}}\approx 5.9n,\;(n\in N_0),
and a {\it finite} number of states N_{\mbox{dS}}\approx 0.17/(H^2\alpha') in
de Sitter spacetime; m^2_{\mbox{AdS}}\approx 4H^2n^2 (large ) and
N_{\mbox{AdS}}=\infty in anti de Sitter spacetime. The level spacing grows
with in AdS spacetime, while is approximately constant (although larger
than in Minkowski spacetime) in dS spacetime. The massive states in dS
spacetime decay through tunnel effect and the semi-classical decay probability
is computed. The semi-classical quantization of {\it exact} (circular) strings
and the canonical quantization of generic string perturbations around the
string center of mass strongly agree.Comment: Latex, 26 pages + 2 tables and 5 figures that can be obtained from
the authors on request. DEMIRM-Obs de Paris-9404
Complex Scalar DM in a B-L Model
In this work, we implement a complex scalar Dark Matter (DM) candidate in a
gauge extension of the Standard Model. The model contains three
right handed neutrinos with different quantum numbers and a rich scalar sector,
with extra doublets and singlets. In principle, these extra scalars can have
VEVs ( and for the extra doublets and singlets,
respectively) belonging to different energy scales. In the context of
, which allows to obtain naturally
light active neutrino masses and mixing compatible with neutrino experiments,
the DM candidate arises by imposing a symmetry on a given complex
singlet, , in order to make it stable. After doing a study of the
scalar potential and the gauge sector, we obtain all the DM dominant processes
concerning the relic abundance and direct detection. Then, for a representative
set of parameters, we found that a complex DM with mass around GeV, for
example, is compatible with the current experimental constraints without
resorting to resonances. However, additional compatible solutions with heavier
masses can be found in vicinities of resonances. Finally, we address the issue
of having a light CP-odd scalar in the model showing that it is safe concerning
the Higgs and the boson invisible decay widths, and also the energy
loss in stars astrophysical constraints.Comment: 20 pages, 3 figure
Revisiting Minimal Lepton Flavour Violation in the Light of Leptonic CP Violation
The Minimal Lepton Flavour Violation (MLFV) framework is discussed after the
recent indication for CP violation in the leptonic sector. Among the three
distinct versions of MLFV, the one with degenerate right-handed neutrinos will
be disfavoured, if this indication is confirmed. The predictions for leptonic
radiative rare decays and muon conversion in nuclei are analysed, identifying
strategies to disentangle the different MLFV scenarios. The claim that the
present anomalies in the semi-leptonic -meson decays can be explained within
the MLFV context is critically re-examined concluding that such an explanation
is not compatible with the present bounds from purely leptonic processes.Comment: 36 pages, 4 figures. V2: References added; version accepted for
publication on JHE
Quasi-elastic peak lineshapes in adsorbate diffusion on nearly flat surfaces at low coverages: the motional narrowing effect in Xe on Pt(111)
Quasi-elastic helium atom scattering measurements have provided clear
evidence for a two-dimensional free gas of Xe atoms on Pt(111) at low
coverages. Increasing the friction due to the surface, a gradual change of the
shape of the quasi-elastic peak is predicted and analyzed for this system in
terms of the so-called motional narrowing effect. The type of analysis
presented here for the quasi-elastic peak should be prior to any deconvolution
procedure carried out in order to better extract information from the process,
e.g. diffusion coefficients and jump distributions. Moreover, this analysis
also provides conditions for the free gas regime different than those reported
earlier.Comment: 12 pages, 4 figures (revised version
Boundary K-matrices for the XYZ, XXZ AND XXX spin chains
The general solutions for the factorization equations of the reflection
matrices for the eight vertex and six vertex models (XYZ, XXZ
and XXX chains) are found. The associated integrable magnetic Hamiltonians are
explicitly derived, finding families dependig on several continuous as well as
discrete parameters.Comment: 13 page
String dynamics in cosmological and black hole backgrounds: The null string expansion
We study the classical dynamics of a bosonic string in the --dimensional
flat Friedmann--Robertson--Walker and Schwarzschild backgrounds. We make a
perturbative development in the string coordinates around a {\it null} string
configuration; the background geometry is taken into account exactly. In the
cosmological case we uncouple and solve the first order fluctuations; the
string time evolution with the conformal gauge world-sheet --coordinate
is given by , where
are given by Eqs.\ (3.15), and is the exponent of the conformal factor
in the Friedmann--Robertson--Walker metric, i.e. . The string
proper size, at first order in the fluctuations, grows like the conformal
factor and the string energy--momentum tensor corresponds to that of
a null fluid. For a string in the black hole background, we study the planar
case, but keep the dimensionality of the spacetime generic. In the null
string expansion, the radial, azimuthal, and time coordinates are
and The first terms of the series represent a
{\it generic} approach to the Schwarzschild singularity at . First and
higher order string perturbations contribute with higher powers of . The
integrated string energy-momentum tensor corresponds to that of a null fluid in
dimensions. As the string approaches the singularity its proper
size grows indefinitely like . We end the paper
giving three particular exact string solutions inside the black hole.Comment: 17 pages, REVTEX, no figure
- …