2 research outputs found

    Long-term impairment of neurovascular coupling following experimental subarachnoid hemorrhage

    Get PDF
    CO2-reactivity and neurovascular coupling are sequentially lost within the first 24 h after subarachnoid hemorrhage (SAH). Whether and when these impairments recover is not known. Therefore, we investigated the reactivity of pial and intraparenchymal vessels by in vivo two-photon microscopy one month after experimental SAH. C57BL/6 mice were subjected to either sham surgery or SAH by filament perforation. One month later, cerebral blood flow following CO2-challenge and forepaw stimulation was assessed by laser Doppler fluxmetry. Diameters of pial and intraparenchymal arterioles were quantified by in vivo two-photon microscopy. One month after SAH, pial and parenchymal vessels dilated in response to CO2. Neurovascular coupling was almost completely absent after SAH: vessel diameter did not change upon forepaw stimulation compared to a 20% increase in sham-operated mice. The current results demonstrate that neurovascular function differentially recovers after SAH: while CO2-reactivity normalizes within one month after SAH, neurovascular coupling is still absent. These findings show an acute and persistent loss of neurovascular coupling after SAH that may serve as a link between early brain injury and delayed cerebral ischemia, two distinct pathophysiological phenomena after SAH that were so far believed not to be directly related

    Dysfunction of mouse cerebral arteries during early aging

    No full text
    Aging leads to a gradual decline in the fidelity of cerebral blood flow (CBF) responses to neuronal activation, resulting in an increased risk for stroke and dementia. However, it is currently unknown when age-related cerebrovascular dysfunction starts or which vascular components and functions are first affected. The aim of this study was to examine the function of microcirculation throughout aging in mice. Microcirculation was challenged by inhalation of 5% and 10% CO2 or by forepaw stimulation in 6-week, 8-month, and 12-month-old FVB/N mice. The resulting dilation of pial vessels and increase in CBF was measured by intravital fluorescence microscopy and laser Doppler fluxmetry, respectively. Neurovascular coupling and astrocytic endfoot Ca2+ were measured in acute brain slices from 18-month-old mice. We did not reveal any changes in CBF after CO2 reactivity up to an age of 12 months. However, direct visualization of pial vessels by in vivo microscopy showed a significant, age-dependent loss of CO2 reactivity starting at 8 months of age. At the same age neurovascular coupling was also significantly affected. These results suggest that aging does not affect cerebral vessel function simultaneously, but starts in pial microvessels months before global changes in CBF are detectable
    corecore