42 research outputs found
Biomolecule Coupling Using Alternating Current Electrophoretic Deposition: Protein; Enzyme and Polysaccharide Coatings
Please click Additional Files below to see the full abstract
In vitro and in vivo evaluation of periosteum-derived cells and iPSC-derived chondrocytes encapsulated in GelMA for osteochondral tissue engineering
Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant
Towards the Experimentally-Informed In Silico Nozzle Design Optimization for Extrusion-Based Bioprinting of Shear-Thinning Hydrogels
Article number 701778Research in bioprinting is booming due to its potential in addressing several manufacturing challenges in regenerative medicine. However, there are still many hurdles to overcome to guarantee cell survival and good printability. For the 3D extrusion-based bioprinting, cell viability is amongst one of the lowest of all the bioprinting techniques and is strongly influenced by various factors including the shear stress in the print nozzle. The goal of this study is to quantify, by means of in silico modeling, the mechanical environment experienced by the bioink during the printing process. Two ubiquitous nozzle shapes, conical and blunted, were considered, as well as three common hydrogels with material properties spanning from almost Newtonian to highly shear-thinning materials following the power-law behavior: Alginate-Gelatin, Alginate and PF127. Comprehensive in silico testing of all combinations of nozzle geometry variations and hydrogels was achieved by combining a design of experiments approach (DoE) with a computational fluid dynamics (CFD) of the printing process, analyzed through a machine learning approach named Gaussian Process. Available experimental results were used to validate the CFD model and justify the use of shear stress as a surrogate for cell survival in this study. The lower and middle nozzle radius, lower nozzle length and the material properties, alone and combined, were identified as the major influencing factors affecting shear stress, and therefore cell viability, during printing. These results were successfully compared with those of reported experiments testing viability for different nozzle geometry parameters under constant flow rate or constant pressure. The in silico 3D bioprinting platform developed in this study offers the potential to assist and accelerate further development of 3D bioprinting.Horizonte 2020 RIA(Unión Europea) 874837Horizonte 2020 (Unión Europea) INSITE 772418Fondo de Investigaciones CientÃficas (FNRS) T.0256.16Beca José Castillejo CAS17 /0017
High-resolution in vivo imaging of xylem-transported CO2 in leaves based on real-time 11C-tracing
Plant studies using the short-lived isotope C-11 to label photosynthate via atmospheric carbon dioxide (CO2), have greatly advanced our knowledge about the allocation of recent photosynthate from leaves to sinks. However, a second source for photosynthesis is CO2 in the transpiration stream, coming from respiration in plant tissues. Here, we use in vivo tracing of xylem-transported (CO2)-C-11 to increase our knowledge on whole plant carbon cycling.We developed a newmethod for in vivo tracing of xylem-transported CO2 in excised poplar leaves using C-11 in combination with positron emission tomography (PET) and autoradiography. To show the applicability of both measurement techniques in visualizing and quantifying CO2 transport dynamics, we administered the tracer via the cut petiole and manipulated the transport by excluding light or preventing transpiration. Irrespective of manipulation, some tracer was found in main and secondary veins, little of it was fixed in minor veins or mesophyll, while most of it diffused out the leaf. Transpiration, phloem loading and CO2 recycling were identified as mechanisms that could be responsible for the transport of internal CO2. Both C-11-PET and autoradiography can be successfully applied to study xylem-transported CO2, toward better understanding of leaf and plant carbon cycling, and its importance in different growing conditions
Masterclass Family-Dynamics-in-Business
Masterclass in samenwerking met Veerle Wullaert Family dynamics for family business advisors: voor advocaten, accountants, notarissen, bemiddelaars en vermogensbeheerders die meer inzichten willen in hoe familiedynamieken impact hebben op de bedrijfsdynamieken
Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review
Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiological processes, such as inflammatory and immune responses. It is required for skin health; therefore, a lack of NO• is known to cause or worsen skin conditions related to three biomedical applications— infection treatment, injury healing, and blood circulation. Therefore, research on its topical release has been increasing for the last two decades. The storage and delivery of nitric oxide in physiological conditions to compensate for its deficiency is achieved through pharmacological compounds called NO-donors. These are further incorporated into scaffolds to enhance therapeutic treatment. A wide range of polymeric scaffolds has been developed and tested for this purpose. Hence, this review aims to give a detailed overview of the natural, synthetic, and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing, and circulatory dermal applications. These matrices have already set a solid foundation in nitric oxide release and their future perspective is headed toward an enhanced controlled release by novel functionalized semisynthetic polymer carriers and co-delivery synergetic platforms. Finally, further clinical tests on patients with the targeted condition will hopefully enable the eventual commercialization of these systems
Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review
Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiological processes, such as inflammatory and immune responses. It is required for skin health; therefore, a lack of NO• is known to cause or worsen skin conditions related to three biomedical applications— infection treatment, injury healing, and blood circulation. Therefore, research on its topical release has been increasing for the last two decades. The storage and delivery of nitric oxide in physiological conditions to compensate for its deficiency is achieved through pharmacological compounds called NO-donors. These are further incorporated into scaffolds to enhance therapeutic treatment. A wide range of polymeric scaffolds has been developed and tested for this purpose. Hence, this review aims to give a detailed overview of the natural, synthetic, and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing, and circulatory dermal applications. These matrices have already set a solid foundation in nitric oxide release and their future perspective is headed toward an enhanced controlled release by novel functionalized semisynthetic polymer carriers and co-delivery synergetic platforms. Finally, further clinical tests on patients with the targeted condition will hopefully enable the eventual commercialization of these systems
Materials for Dentoalveolar Bioprinting: Current State of the Art
Although current treatments can successfully address a wide range of complications in the dentoalveolar region, they often still suffer from drawbacks and limitations, resulting in sub-optimal treatments for specific problems. In recent decades, significant progress has been made in the field of tissue engineering, aiming at restoring damaged tissues via a regenerative approach. Yet, the translation into a clinical product is still challenging. Novel technologies such as bioprinting have been developed to solve some of the shortcomings faced in traditional tissue engineering approaches. Using automated bioprinting techniques allows for precise placement of cells and biological molecules and for geometrical patient-specific design of produced biological scaffolds. Recently, bioprinting has also been introduced into the field of dentoalveolar tissue engineering. However, the choice of a suitable material to encapsulate cells in the development of so-called bioinks for bioprinting dentoalveolar tissues is still a challenge, considering the heterogeneity of these tissues and the range of properties they possess. This review, therefore, aims to provide an overview of the current state of the art by discussing the progress of the research on materials used for dentoalveolar bioprinting, highlighting the advantages and shortcomings of current approaches and considering opportunities for further research
4 - Computational design of tissue engineering scaffolds
peer reviewedBecause production technologies for the fabrication of scaffolds for tissue engineering are becoming more and more advanced and aim to increase the controllability of the design of the scaffold and the robustness of the outcome as well as to be able to more closely mimic the native tissue architecture, it is key that the effect of the production process on the structural and functional properties of the construct is well understood. Computational models that can describe these effects will become indispensable with the (bio) fabrication field moving toward the fabrication of complex, gradient 3D structures in terms of cells and materials. They can facilitate high-throughput screenings of novel bioink formulations to determine their printability, optimal shape, and biocompatibility in function of the printer setup used. In addition, computational modeling can help in optimizing the design of the hardware (e.g., nozzle geometry for bioprinting) to improve certain properties of the printed construct (e.g., cell survival). Finally, optimal postprocessing of the construct can be achieved in a bioreactor setting. Also, computer models can play a role in providing information and understanding. This chapter provides an overview of computational models that have been developed to address questions related to quantification and optimization of the scaffold design, the fabrication process, and the postprocessing of the fabricated scaffold
Direct cell-cell contact between periodontal ligament fibroblasts and osteoclast precursors synergistically increases the expression of genes related to osteoclastogenesis
The formation of bone resorbing osteoclasts in vivo is orchestrated by cells of the osteoblast lineage such as periodontal ligament fibroblasts that provide the proper signals to osteoclast precursors. Although the requirement of cell-cell interactions is widely acknowledged, it is unknown whether these interactions influence the expression of genes required for osteoclastogenesis and the ultimate formation of osteoclasts. In the present study we investigated the effect of cell-cell interaction on the mRNA expression of adhesion molecules and molecules involved in osteoclast formation in cultures of peripheral blood mononuclear cells (PBMCs) and human primary periodontal ligament fibroblasts, both as solitary cultures and in co-culture. We further analyzed the formation of multinucleated, tartrate resistant acid phosphatase (TRACP) positive cells and assessed their bone resorbing abilities. Interestingly, gene expression of intercellular adhesion molecule-1 (ICAM-1) and of osteoclastogenesis-related genes (RANKL, RANK, TNF-alpha, and IL-1 beta) was highly up-regulated in the co-cultures compared to mono-cultures and the 5-10-fold up-regulation reflected a synergistic increase due to direct cell-cell interaction. This induction strongly overpowered the effects of known osteoclastogenesis inducers I,25(OH)(2)VitD(3) and dexamethasone. In case of indirect cell-cell contact mRNA expression was not altered, indicating that heterotypic adhesion is required for the increase in gene expression. In addition, the number of osteoclast-like cells that were formed in co-culture with periodontal ligament fibroblasts was significantly augmented compared to mono-cultures. Our data indicate that cell-cell adhesion between osteoclast precursors and periodontal ligament fibroblasts significantly modulates the cellular response which favors the expression of osteoclast differentiation genes and the ultimate formation of osteoclasts. J. Cell. Physiol. 222: 565-573, 2010. (C) 2009 Wiley-Liss, Inc.status: publishe