18 research outputs found

    Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-ÎșB pathways in diabetic neuropathy

    Get PDF
    AbstractThe Nuclear factor-2 erythroid related factor-2 (Nrf2) is a redox regulated transcription factor involved in the regulation of antioxidant defence systems. It drives the production of endogenous antioxidant defences and detoxifying enzymes. Nuclear factor-kappa light chain enhancer of B cells (NF-ÎșB) is a transcription factor, involved in proinflammatory cytokine production, in addition to its immunological function. Both Nrf2 and NF-ÎșB regulation are co-ordinated in order to maintain redox homeostasis in healthy cells. However, during pathological conditions this regulation is perturbed offering an opportunity for therapeutic intervention. Diabetic neuropathy is a condition, in which change in expression pattern of Nrf2 and NF-ÎșB has been reported. This review aims to focus on the role of the Nrf2 and NF-ÎșB in diabetic neuropathy and summarizes the therapeutic outcomes of various pharmacological modulators targeted at the Nrf2–NF-ÎșB axis in diabetic neuropathy

    Neuroinflammation and Oxidative Stress in Diabetic Neuropathy: Futuristic Strategies Based on These Targets

    Get PDF
    In Diabetes, the chronic hyperglycemia and associated complications affecting peripheral nerves are one of the most commonly occurring microvascular complications with an overall prevalence of 50–60%. Among the vascular complications of diabetes, diabetic neuropathy is the most painful and disabling, fatal complication affecting the quality of life in patients. Several theories of etiologies surfaced down the lane, amongst which the oxidative stress mediated damage in neurons and surrounding glial cell has gained attention as one of the vital mechanisms in the pathogenesis of neuropathy. Mitochondria induced ROS and other oxidants are responsible for altering the balance between oxidants and innate antioxidant defence of the body. Oxidative-nitrosative stress not only activates the major pathways namely, polyol pathway flux, advanced glycation end products formation, activation of protein kinase C, and overactivity of the hexosamine pathway, but also initiates and amplifies neuroinflammation. The cross talk between oxidative stress and inflammation is due to the activation of NF-ÎșB and AP-1 and inhibition of Nrf2, peroxynitrite mediate endothelial dysfunction, altered NO levels, and macrophage migration. These all culminate in the production of proinflammatory cytokines which are responsible for nerve tissue damage and debilitating neuropathies. This review focuses on the relationship between oxidative stress and neuroinflammation in the development and progression of diabetic neuropathy

    Special Issue “Latest Advances in Nanomedicine Strategies for Different Diseases”

    No full text
    We launched this Special Issue amidst the COVID-19 pandemic, spurred by the growing interest in nanotherapeutic formulations for delivering SARS-CoV-2 viral messenger Ribonucleic Acid (mRNA) vaccines [...

    Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling

    No full text
    Even with recent advances in care, heart failure remains a major cause of morbidity and mortality, which urgently needs new treatments. One of the major antecedents of heart failure is pathological ventricular remodelling, the abnormal change in the size, shape, function or composition of the cardiac ventricles in response to load or injury. Accumulating immune cell subpopulations contribute to the change in cardiac cellular composition that occurs during ventricular remodelling, and these immune cells can facilitate heart failure development. Among cardiac immune cell subpopulations, macrophages that are recognized by their transcriptional or cell-surface expression of the chemokine receptor C-C chemokine receptor type 2 (CCR2), have emerged as playing an especially important role in adverse remodelling. Here, we assimilate the literature that has been generated over the past two decades describing the pathological roles that CCR2+ macrophages play in ventricular remodelling. The goal is to facilitate research and innovation efforts in heart failure therapeutics by drawing attention to the importance of studying the manner by which CCR2+ macrophages mediate their deleterious effects

    Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Get PDF
    Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN) remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy

    Potential Therapeutic Benefits of Maintaining Mitochondrial Health in Peripheral Neuropathies

    Full text link
    575 King Street, Port Chester, NY 10573exterior, colored glass window

    The Dipeptidyl Peptidase-4 Inhibitor Linagliptin Directly Enhances the Contractile Recovery of Mouse Hearts at a Concentration Equivalent to that Achieved with Standard Dosing in Humans

    No full text
    Despite a similar mechanism of action underlying their glucose-lowering effects in type 2 diabetes, dipeptidyl peptidase-4 (DPP-4) inhibitors have diverse molecular structures, raising the prospect of agent-specific, glucose-independent actions. To explore the issue of possible DPP-4 inhibitor cardiac heterogeneity, we perfused different DPP-4 inhibitors to beating mouse hearts ex vivo, at concentrations equivalent to peak plasma levels achieved in humans with standard dosing. We studied male and female mice, young non-diabetic mice, and aged diabetic high fat diet-fed mice and observed that linagliptin enhanced recovery after ischemia-reperfusion, whereas sitagliptin, alogliptin, and saxagliptin did not. DPP-4 transcripts were not detected in adult mouse cardiomyocytes by RNA sequencing and the addition of linagliptin caused ≤0.2% of cardiomyocyte genes to be differentially expressed. In contrast, incubation of C166 endothelial cells with linagliptin induced cell signaling characterized by phosphorylation of Akt and endothelial nitric oxide synthase, whereas the nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine increased serine 16 phosphorylation of the calcium regulatory protein, phospholamban in cardiomyocytes. Furthermore, linagliptin increased cardiomyocyte cGMP when cells were co-cultured with C166 endothelial cells, but not when cardiomyocytes were cultured alone. Thus, at a concentration comparable to that achieved in patients, linagliptin has direct effects on mouse hearts. The effects of linagliptin on cardiomyocytes are likely to be either off-target or indirect, mediated through NO generation by the adjacent cardiac endothelium
    corecore