6 research outputs found

    Mice co-administrated with partially hydrolysed whey proteins and prebiotic fibre mixtures show allergen-specific tolerance and a modulated gut microbiota

    Get PDF
    Non-breastfed infants at-risk of allergy are recommended to use a hydrolysed formula before the age of 6 months. The addition of prebiotics to this formula may reduce the allergy development in these infants, but clinical evidence is still inconclusive. This study evaluates (1) whether the exposure duration to different prebiotics alongside a partially hydrolysed whey protein (pHP) influences its' effectiveness to prevent allergy development and (2) whether the gut microbiota plays a role in this process. Mice orally sensitised with whey and/or cholera toxin were orally treated for six days before sensitization with phosphate buffered saline, whey or pHP to potentially induce tolerance. Two groups received an oligosaccharide diet only from day -7 until -2 (GFshort and GFAshort) whereas two other groups received their diets from day -15 until 37 (GFlong and GFAlong). On day 35, mice underwent an intradermal whey challenge, and the acute allergic skin response, shock score, and body temperatures were measured. At day 37, mice received whey orally and serum mouse mast cell protease-1, SLPI and whey-specific antibodies were assessed. Faecal samples were taken at day -15, -8 and 34. Feeding mice pHP alone during tolerance induction did not reduce ear swelling. The tolerance inducing mechanisms seem to vary according to the oligosaccharide-composition. GFshort, GFlong, and GFAlong reduced the allergic skin response, whereas GFAshort was not potent enough. However, in the treatment groups, the dominant Lactobacillus species decreased, being replaced by Bacteroidales family S24- 7 members. In addition, the relative abundance of Prevotella was significantly higher in the GFlong, GFAshort and GFAlong groups. Co-administration of oligosaccharides and pHP can induce immunological tolerance in mice, although tolerance induction was strongest in the animals that were fed oligosaccharides during the entire protocol. Some microbial changes coincided with tolerance induction, however, a specific mechanism could not be determined based on these data

    Decreased Histone Acetylation Levels at Th1 and Regulatory Loci after Induction of Food Allergy

    No full text
    Immunoglobulin E (IgE)-mediated allergy against cow's milk protein fractions such as whey is one of the most common food-related allergic disorders of early childhood. Histone acetylation is an important epigenetic mechanism, shown to be involved in the pathogenesis of allergies. However, its role in food allergy remains unknown. IgE-mediated cow's milk allergy was successfully induced in a mouse model, as demonstrated by acute allergic symptoms, whey-specific IgE in serum, and the activation of mast cells upon a challenge with whey protein. The elicited allergic response coincided with reduced percentages of regulatory T (Treg) and T helper 17 (Th17) cells, matching decreased levels of H3 and/or H4 histone acetylation at pivotal Treg and Th17 loci, an epigenetic status favoring lower gene expression. In addition, histone acetylation levels at the crucial T helper 1 (Th1) loci were decreased, most probably preceding the expected reduction in Th1 cells after inducing an allergic response. No changes were observed for T helper 2 cells. However, increased histone acetylation levels, promoting gene expression, were observed at the signal transducer and activator of transcription 6 (Stat6) gene, a proallergic B cell locus, which was in line with the presence of whey-specific IgE. In conclusion, the observed histone acetylation changes are pathobiologically in line with the successful induction of cow's milk allergy, to which they might have also contributed mechanistically

    Decreased Histone Acetylation Levels at Th1 and Regulatory Loci after Induction of Food Allergy

    Get PDF
    Immunoglobulin E (IgE)-mediated allergy against cow's milk protein fractions such as whey is one of the most common food-related allergic disorders of early childhood. Histone acetylation is an important epigenetic mechanism, shown to be involved in the pathogenesis of allergies. However, its role in food allergy remains unknown. IgE-mediated cow's milk allergy was successfully induced in a mouse model, as demonstrated by acute allergic symptoms, whey-specific IgE in serum, and the activation of mast cells upon a challenge with whey protein. The elicited allergic response coincided with reduced percentages of regulatory T (Treg) and T helper 17 (Th17) cells, matching decreased levels of H3 and/or H4 histone acetylation at pivotal Treg and Th17 loci, an epigenetic status favoring lower gene expression. In addition, histone acetylation levels at the crucial T helper 1 (Th1) loci were decreased, most probably preceding the expected reduction in Th1 cells after inducing an allergic response. No changes were observed for T helper 2 cells. However, increased histone acetylation levels, promoting gene expression, were observed at the signal transducer and activator of transcription 6 (Stat6) gene, a proallergic B cell locus, which was in line with the presence of whey-specific IgE. In conclusion, the observed histone acetylation changes are pathobiologically in line with the successful induction of cow's milk allergy, to which they might have also contributed mechanistically
    corecore