115 research outputs found

    Tracheotomy does not affect reducing sedation requirements of patients in intensive care – a retrospective study

    Get PDF
    INTRODUCTION: Translaryngeal intubated and ventilated patients often need sedation to treat anxiety, agitation and/or pain. Current opinion is that tracheotomy reduces sedation requirements. We determined sedation needs before and after tracheotomy of intubated and mechanically ventilated patients. METHODS: We performed a retrospective analysis of the use of morphine, midazolam and propofol in patients before and after tracheotomy. RESULTS: Of 1,788 patients admitted to our intensive care unit during the study period, 129 (7%) were tracheotomized. After the exclusion of patients who received a tracheotomy before or at the day of admittance, 117 patients were left for analysis. The daily dose (DD; the amount of sedatives for each day) divided by the mean daily dose (MDD; the mean amount of sedatives per day for the study period) in the week before and the week after tracheotomy was 1.07 ± 0.93 DD/MDD versus 0.30 ± 0.65 for morphine, 0.84 ± 1.03 versus 0.11 ± 0.46 for midazolam, and 0.62 ± 1.05 versus 0.15 ± 0.45 for propofol (p < 0.01). However, when we focused on a shorter time interval (two days before and after tracheotomy), there were no differences in prescribed doses of morphine and midazolam. Studying the course in DD/MDD from seven days before the placement of tracheotomy, we found a significant decline in dosage. From day -7 to day -1, morphine dosage (DD/MDD) declined by 3.34 (95% confidence interval -1.61 to -6.24), midazolam dosage by 2.95 (-1.49 to -5.29) and propofol dosage by 1.05 (-0.41 to -2.01). After tracheotomy, no further decrease in DD/MDD was observed and the dosage remained stable for all sedatives. Patients in the non-surgical and acute surgical groups received higher dosages of midazolam than patients in the elective surgical group. Time until tracheotomy did not influence sedation requirements. In addition, there was no significant difference in sedation between different patient groups. CONCLUSION: In our intensive care unit, sedation requirements were not further reduced after tracheotomy. Sedation requirements were already sharply declining before tracheotomy was performed

    Mechanical ventilation with lower tidal volumes does not influence the prescription of opioids or sedatives

    Get PDF
    INTRODUCTION: We compared the effects of mechanical ventilation with a lower tidal volume (V(T)) strategy versus those of greater V(T) in patients with or without acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) on the use of opioids and sedatives. METHODS: This is a secondary analysis of a previously conducted before/after intervention study, which consisting of feedback and education on lung protective mechanical ventilation using lower V(T). We evaluated the effects of this intervention on medication prescriptions from days 0 to 28 after admission to our multidisciplinary intensive care unit. RESULTS: Medication prescriptions in 23 patients before and 38 patients after intervention were studied. Of these patients, 10 (44%) and 15 (40%) suffered from ALI/ARDS. The V(T) of ALI/ARDS patients declined from 9.7 ml/kg predicted body weight (PBW) before to 7.8 ml/kg PBW after the intervention (P = 0.007). For patients who did not have ALI/ARDS there was a trend toward a decline from 10.2 ml/kg PBW to 8.6 ml/kg PBW (P = 0.073). Arterial carbon dioxide tension was significantly greater after the intervention in ALI/ARDS patients. Neither the proportion of patients receiving opioids or sedatives, or prescriptions at individual time points differed between pre-intervention and post-intervention. Also, there were no statistically significant differences in doses of sedatives and opioids. Findings were no different between non-ALI/ARDS patients and ALI/ARDS patients. CONCLUSION: Concerns regarding sedation requirements with use of lower V(T) are unfounded and should not preclude its use in patients with ALI/ARD

    Manual hyperinflation partly prevents reductions of functional residual capacity in cardiac surgical patients - a randomized controlled trial

    Get PDF
    Cardiac surgery is associated with post-operative reductions of functional residual capacity (FRC). Manual hyperinflation (MH) aims to prevent airway plugging, and as such could prevent the reduction of FRC after surgery. The main purpose of this study was to determine the effect of MH on post-operative FRC of cardiac surgical patients. This was a randomized controlled trial of patients after elective coronary artery bypass graft and/or valve surgery admitted to the intensive care unit (ICU) of a university hospital. Patients were randomly assigned to a "routine MH group" (MH was performed within 30 minutes after admission to the ICU and every 6 hours thereafter, and before tracheal extubation), or a "control group" (MH was performed only if perceptible (audible) sputum was present in the larger airways causing problems with mechanical ventilation, or if oxygen saturation (SpO2) dropped below 92%). The primary endpoint was the reduction of FRC from the day before cardiac surgery to one, three, and five days after tracheal extubation. Secondary endpoints were SpO2 (at similar time points) and chest radiograph abnormalities, including atelectasis (at three days after tracheal extubation). A total of 100 patients were enrolled. Patients in the routine MH group showed a decrease of FRC on the first post-operative day to 71% of the pre-operative value, versus 57% in the control group (P = 0.002). Differences in FRC became less prominent over time; differences between the two study groups were no longer statistically significant at Day 5. There were no differences in SpO2 between the study groups. Chest radiographs showed more abnormalities (merely atelectasis) in the control group compared to patients in the routine MH group (P = 0.002). MH partly prevents the reduction of FRC in the first post-operative days after cardiac surgery. Netherlands Trial Register (NTR): NTR1384. http://www.trialregister.n

    The hemodynamic cardiac profiler volume-time curves and related parameters: an MRI validation study

    Get PDF
    Background. The hemodynamic cardiac profiler (HCP) is a new, non-invasive, operator-independent screening tool that uses six independent electrode pairs on the frontal thoracic skin, and a low-intensity, patient-safe, high-frequency applied alternating current to measure ventricular volume dynamics during the cardiac cycle for producing ventricular volume-time curves (VTCs). Objective. To validate VTCs from HCP against VTCs from MRI in healthy volunteers. Approach. Left- and right-ventricular VTCs were obtained by HCP and MRI in six healthy participants in supine position. Since HCP is not compatible with MRI, HCP measurements were performed within 20 min before and immediately after MRI, without intermittent fluid intake or release by participants. Intraclass correlation coefficients (ICCs) were calculated to validate HCP-VTC against MRI-VTC and to assess repeatability of HCP measurements before and after MRI. Bland-Altman plots were used to assess agreement between relevant HCP- and MRI-VTC-derived parameters. Precision of HCP’s measurement of VTC-derived parameters was determined for each study participant by calculating the coefficients of variation and repeatability coefficients. Main results. Left- and right-ventricular VTC ICCs between HCP and MRI were >0.8 for all study participants, indicating excellent agreement between HCP-VTCs and MRI-VTCs. Mean (range) ICC of HCP right-ventricular VTC versus MRI right-ventricular VTC was 0.94 (0.88-0.99) and seemed to be slightly higher than the mean ICC of HCP left-ventricular VTC versus MRI-VTC (0.91 (0.80-0.96)). The repeatability coefficient for HCP’s measurement of systolic time (tSys) was 45.0 ms at a mean value of 282.9 ± 26.3 ms. Repeatability of biventricular HCP-VTCs was excellent (ICC 0.96 (0.907-0.995)). Significance. Ventricular volume dynamics measured by HCP-VTCs show excellent agreement with VTCs measured by MRI. Since abnormal tSys is a sign of numerous cardiac diseases, the HCP may potentially be used as a diagnostic screening tool

    The First Steps in Understanding of Transfusion-Associated Circulatory Overload-We Are on a "Roll"

    No full text

    Additional clarification for tracheotomy practice: the right conclusions amended

    No full text
    • …
    corecore