574 research outputs found
Self-Similar Anisotropic Texture Analysis: the Hyperbolic Wavelet Transform Contribution
Textures in images can often be well modeled using self-similar processes
while they may at the same time display anisotropy. The present contribution
thus aims at studying jointly selfsimilarity and anisotropy by focusing on a
specific classical class of Gaussian anisotropic selfsimilar processes. It will
first be shown that accurate joint estimates of the anisotropy and
selfsimilarity parameters are performed by replacing the standard 2D-discrete
wavelet transform by the hyperbolic wavelet transform, which permits the use of
different dilation factors along the horizontal and vertical axis. Defining
anisotropy requires a reference direction that needs not a priori match the
horizontal and vertical axes according to which the images are digitized, this
discrepancy defines a rotation angle. Second, we show that this rotation angle
can be jointly estimated. Third, a non parametric bootstrap based procedure is
described, that provides confidence interval in addition to the estimates
themselves and enables to construct an isotropy test procedure, that can be
applied to a single texture image. Fourth, the robustness and versatility of
the proposed analysis is illustrated by being applied to a large variety of
different isotropic and anisotropic self-similar fields. As an illustration, we
show that a true anisotropy built-in self-similarity can be disentangled from
an isotropic self-similarity to which an anisotropic trend has been
superimposed
Two-step Doppler cooling of a three-level ladder system with an intermediate metastable level
Doppler laser cooling of a three-level ladder system using two near-resonant
laser fields is analyzed in the case of the intermediate level being metastable
while the upper level is short-lived. Analytical as well as numerical results
for e.g. obtainable scattering rates and achievable temperatures are presented.
When appropriate, comparisons with two-level single photon Doppler laser
cooling is made. These results are relevant to recent experimental Doppler
laser cooling investigations addressing intercombination lines in alkali-earth
metal atoms and quadrupole transitions in alkali-earth metal ions.Comment: accepted by Phys Rev
The Structure of Isothermal, Self-gravitating Gas Spheres for Softened Gravity
A theory for the structure of isothermal, self-gravitating gas spheres in
pressure equilibrium in a softened gravitational field is developed. The one
parameter spline softening proposed by Hernquist & Katz (1989) is used. We show
that the addition of this extra scale parameter implies that the set of
equilibrium solutions constitute a one-parameter family, rather than the one
and only one isothermal sphere solution for Newtonian gravity. We demonstrate
the perhaps somewhat surprising result that for any finite choice of softening
length and temperature, it is possible to deposit an arbitrarily large mass of
gas in pressure equilibrium and with a non-singular density distribution inside
of r_0 for any r_0 > 0. The theoretical predictions of our models are compared
with the properties of the small, massive, quasi-isothermal gas clumps which
typically form in numerical Tree-SPH simulations of 'passive' galaxy formation
of Milky Way sized galaxies. We find reasonable agreement despite the neglect
of rotational support in the models. We comment on whether the hydrodynamical
resolution in our numerical simulation of galaxy formation is sufficient, and
finally we conclude that one should be cautious, when comparing results of
numerical simulations involving gravitational softening and hydrodynamical
smoothing, with reality.Comment: 22 pages Latex + 12 figure
Dark resonances as a probe for the motional state of a single ion
Single, rf-trapped ions find various applications ranging from metrology to
quantum computation. High-resolution interrogation of an extremely weak
transition under best observation conditions requires an ion almost at rest. To
avoid line-broadening effects such as the second order Doppler effect or rf
heating in the absence of laser cooling, excess micromotion has to be
eliminated as far as possible. In this work the motional state of a confined
three-level ion is probed, taking advantage of the high sensitivity of observed
dark resonances to the trapped ion's velocity. Excess micromotion is controlled
by monitoring the dark resonance contrast with varying laser beam geometry. The
influence of different parameters such as the cooling laser intensity has been
investigated experimentally and numerically
Terahertz frequency standard based on three-photon coherent population trapping
A scheme for a THz frequency standard based on three-photon coherent
population trapping in stored ions is proposed. Assuming the propagation
directions of the three lasers obey the phase matching condition, we show that
stability of few 10 at one second can be reached with a precision
limited by power broadening to in the less favorable case. The
referenced THz signal can be propagated over long distances, the useful
information being carried by the relative frequency of the three optical
photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2
(24/05/2007
Evaluation of the ultimate performances of a Ca+ single-ion frequency standard
We numerically evaluate the expected performances of an optical frequency
standard at 729 nm based on a single calcium ion. The frequency stability is
studied through the Allan deviation and its dependence on the excitation method
(single Rabi pulse or two Ramsey pulses schemes) and the laser linewidth are
discussed. The minimum Allan deviation that can be expected is estimated to
with the
integration time. The frequency shifts induced by the environmental conditions
are evaluated to minimize the uncertainty of the proposed standard by chosing
the most suited environment for the ion. If using the odd isotope
Ca and a vessel cooled to 77 K, the expected relative shift is with an uncertainty of , mainly due to
the quadrupole shift induced by the unknown static electric field gradient .Comment: soumis le 27/07/04 a Physics Letters
CIV Absorption From Galaxies in the Process of Formation
We investigate the heavy element QSO absorption systems caused by gas
condensations at high redshift which evolve into galaxies with circular
velocity of 100 to 200 km/s at the present epoch. Artificial QSO spectra were
generated for a variety of lines-of-sight through regions of the universe
simulated with a hydrodynamics code. The CIV and HI absorption features in
these spectra closely resemble observed CIV and HI absorption systems over a
wide range in column density. CIV absorption complexes with multiple-component
structure and velocity spreads up to about 600 km/s are found. The broadest
systems are caused by lines-of-sight passing through groups of protogalactic
clumps with individual velocity dispersions of less than 150 km/s aligned along
filamentary structures. The temperature of most of the gas does not take the
photoionization equilibrium value. This invalidates density and size estimates
derived from thermal equilibrium models. Consequences for metal abundance
determinations are briefly discussed. We predict occasional exceptionally large
ratios of CIV to HI column density (up to a third) for lines-of-sight passing
through compact halos of hot gas with temperature close to 3 10^5 K. Our model
may be able to explain both high-ionization multi-component heavy-element
absorbers and damped Lyman alpha systems as groups of small protogalactic
clumps.Comment: 13 pages, uuencoded postscript file, 4 figures included submitted to
ApJ (Letters); complete version also available at
http://www.mpa-garching.mpg.de/Galaxien/prep.htm
- âŠ