8 research outputs found

    Digital Droplet PCR for Influenza Vaccine Development

    Get PDF
    AbstractDevelopment of influenza vaccine processes requires virus quantification to optimize conditions in cell culture or in the associated downstream purification steps. Modern methods include qPCR, which utilizes TaqMan chemistry to detect and quantify viral RNA by comparison of a RNA standard of known concentration. Digital droplet PCR (ddPCR) is similar to qPCR in that it shares the same chemistry for nucleic acid detection. However, in ddPCR, the sample is diluted into partitions (‘droplets’) in order to separate and isolate single molecules. Upon PCR amplification, the droplet's fluorescent intensity depends on the presence or absence of the target; as such, positive and negative droplets are identified, which allows for absolute quantification of the viral genomes. The digital approach has enabled several key advantages. First, a standard is no longer required. Second, efficiency of the reverse transcription and the kinetics of the amplification, principles in qPCR, have no impact on the final digital PCR quantification. For this reason, the extracted RNA does not need to be purified from the reagents needed to lyse the virus. Also, viral associated RNA released by infected cells can be measured directly, further improving the quality of the data generated. Additional improvements to the approach include duplexing with a second assay that measures host cell DNA concentration. The method has been successfully implemented with automation in support of multiple upstream and downstream process development efforts for influenza vaccine manufacturing

    Tailoring communication in consultations with women from high risk breast cancer families

    Get PDF
    This multicentre study examined the influence of patient demographic, disease status and psychological variables on clinical geneticists/genetic counsellors (consultants) behaviours in initial consultations with women from high-risk breast cancer families. One hundred and fifty-eight women completed a pre-clinic self-report questionnaire. The consultations were audiotaped, transcribed verbatim and coded. Consultants did not vary their behaviour according to women's expectations. However, significantly more aspects of genetic testing were discussed with women who were affected with breast cancer (P<0.001), screening and management with unaffected women (P=0.01) and breast cancer prevention with younger women (P=0.01). Prophylactic mastectomy was discussed more frequently with women with medical and allied health training (P=0.02), and prophylactic oophorectomy with women affected with breast cancer (P=0.03), those in non-professional occupations (P=0.04) and with a family history of breast and ovarian cancer (P<0.001). Consultants used significantly more behaviours to facilitate understanding with women who were in non-professional occupations (P=0.04); facilitated active patient involvement more with women affected with breast cancer (P<0.001) and used more supportive and counselling behaviours with affected women (P=0.02). This study showed that patient demographics were more likely to predict consultants' communication behaviours than the woman's psychological status. Methods to facilitate assessment of psychological morbidity are needed to allow more tailored communication

    Human activities shape global patterns of decomposition rates in rivers

    Full text link
    Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams. A large number of variables were important for predicting decomposition, highlighting the complexity of this process at the global scale. Predicted cellulose decomposition rates, when combined with genus-level litter quality attributes, explain published leaf litter decomposition rates with high accuracy (70% variance explained). Our global map provides estimates of rates across vast understudied areas of Earth and reveals rapid decomposition across continental-scale areas dominated by human activities
    corecore