118 research outputs found
A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern
The var multicopy gene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variant antigens, which, through their ability to adhere to a variety of host receptors, are thought to be important virulence factors. The predominant expression of a single cytoadherent PfEMP1 type on an infected red blood cell, and the switching between different PfEMP1 types to evade host protective antibody responses, are processes thought to be controlled at the transcriptional level. Contradictory data have been published on the timing of var gene transcription. Reverse transcription-polymerase chain reaction (RT-PCR) data suggested that transcription of the predominant var gene occurs in the later (pigmented trophozoite) stages, whereas Northern blot data indicated such transcripts only in early (ring) stages. We investigated this discrepancy by Northern blot, with probes covering a diverse var gene repertoire. We confirm that almost all var transcript types were detected only in ring stages. However, one type, the well-conserved varCSA transcript, was present constitutively in different laboratory parasites and does not appear to undergo antigenic variation. Although varCSA has been shown to encode a chondroitin sulphate A (CSA)-binding PfEMP1, we find that the presence of full-length varCSA transcripts does not correlate with the CSA-binding phenotype
Recommended from our members
18 F-AV1451 PET imaging and multimodal MRI changes in progressive supranuclear palsy
Funder: PSP Association; doi: http://dx.doi.org/10.13039/100011707Abstract: Objectives: Progressive supranuclear palsy (PSP) is characterized by deposition of straight filament tau aggregates in the grey matter (GM) of deep nuclei and cerebellum. We examined the relationship between tau pathology (assessed via 18F-AV1451 PET) and multimodal MRI imaging using GM volume, cortical thickness (CTh), and diffusion tensor imaging (DTI). Methods: Twenty-three people with clinically probable PSP-Richardson’s syndrome (age 68.8 ± 5.8 years, 39% female) and 23 controls underwent structural 3 T brain MRI including DTI. Twenty-one patients also had 18F-AV1451 PET imaging. Voxelwise volume-based morphometry, surface-based morphometry, and DTI correlations were performed with 18F-AV1451 binding in typical PSP regions of interest (putamen, thalamus and dentate cerebellum). Clinical impairment was also assessed in relation to the different imaging modalities. Results: PSP subjects showed GM volume loss in frontotemporal regions, basal ganglia, midbrain, and cerebellum (FDR-corrected p < 0.05), reduced CTh in the left entorhinal and fusiform gyrus (p < 0.001) as well as DTI changes in the corpus callosum, internal capsule, and superior longitudinal fasciculus (FWE-corrected p < 0.05). In PSP, higher 18F-AV1451 binding correlated with GM volume loss in frontal regions, DTI changes in motor tracts, and cortical thinning in parietooccipital areas. Cognitive impairment was related to decreased GM volume in frontotemporal regions, thalamus and pallidum, as well as DTI alteration in corpus callosum and cingulum. Conclusion: This cross-sectional study demonstrates an association between in vivo proxy measures of tau pathology and grey and white matter degeneration in PSP. This adds to the present literature about the complex interplay between structural changes and protein deposition
Food loss and waste metrics: a proposed nutritional cost footprint linking linear programming and life cycle assessment
Purpose: The main purpose of this article is to assess the nutritional and economic efficiency of food loss and waste (FLW) along the supply of 13 food categories included in the Spanish food basket by means of the definition of a new method which combines two indexes.
Methods: The nutrient-rich foods index and the economic food loss and waste (EFLW) index were combined by means of linear programming to obtain the nutritional cost footprint (NCF) indicator under a life cycle perspective. The functional unit used was the daily supply of food for a Spanish citizen in year 2015.
Results and discussion: Results showed that vegetables and cereals were the food categories most affected by the inefficiencies in the food supply chain under a nutritional perspective, being agricultural production and household consumption the main stages in which the nutritional content of food is lost or wasted. Moreover, according to the NCF index, vegetables represented 27% of total nutritional-economic wastage throughout the entire Spanish agri-food chain. They are followed by fruits, which add up to 19%. Hence, specific food waste management strategies should be established for these specific products and supply stages. Finally, the sensitivity analysis performed highlighted that results were mostly independent from the importance attributed to either nutritional or economic variables.
Conclusions: The methodology described in this study proposes an indicator quantifying the nutritional-economic cost of different food categories in the Spanish food basket. This NCF indicator makes it possible to define reduction strategies to promote the use of food waste fractions for waste-to-energy valorization approaches or the extraction of different types of pharmacological, chemical, or cosmetic compounds.The authors are grateful for the funding of the Spanish Ministry of Economy and Competitiveness through the Ceres-Procom: Food production and consumption strategies for climate change mitigation (CTM2016-76176-C2-1-R) (AEI/FEDER, UE)
Nutritional data management of food losses and waste under a life cycle approach: case study of the Spanish agri-food system
Food losses and waste (FLW) tend to be referred to in terms of mass, occasionally in economic terms, disregarding the nutritional-cost nexus of such losses. This work aims to estimate the nutritional food losses and waste (NFLW) of the Spanish agri-food system in terms of energy, macronutrients, fibre, and vitamins and minerals along the entire supply chain. Nutritional food losses (NFL) occurring prior to the distribution level, and nutritional food waste (NFW) at the retail and consumption stages, were distinguished, and 48 representative food commodities and 32 nutrients were characterised. To provide insight into the extent of these values, the results are compared to the equivalent recommended daily intake. In addition, the NFLW for an average Spanish citizen is compared to that for other representative diets: Mediterranean, lacto-ovo-vegetarian, and vegan along with the Spanish recommended guidelines. Finally, a nutritional cost footprint (NCF) indicator combining nutritional and economic variables is proposed to define recovery strategies. The results suggest that 4251 kj (1016 kcal), 70.7 g proteins, 22 g dietary fibre, 975 ug vitamin A, 117 mg vitamin C and 332 mg calcium daily per capita are embedded within Spanish FLW. Agricultural production accounts for 40% of NFLW, and fruits and vegetables are the categories with the largest potential for nutritional and economic food wastage mitigation. Results from this paper provide NFLW data and analysis to strengthen and simplify the decision-making process of FLW management strategies.The authors are grateful for the funding of the Spanish Ministry of Economy and Competitiveness through the Ceres-Procom Project: Food production and consumption strategies for climate change mitigation (CTM2016-76176-C2-1-R) (AEI/FEDER, UE)
Treatment with a BH3 mimetic overcomes the resistance of latency III EBV (+) cells to p53-mediated apoptosis
P53 inactivation is often observed in Burkitt's lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (−) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection
Exploring light dark matter with the DarkSPHERE spherical proportional counter electroformed underground at the Boulby Underground Laboratory
We present the conceptual design and the physics potential of DarkSPHERE, a
proposed 3 m in diameter spherical proportional counter electroformed
underground at the Boulby Underground Laboratory. This effort builds on the R&D
performed and experience acquired by the NEWS-G Collaboration. DarkSPHERE is
primarily designed to search for nuclear recoils from light dark matter in the
0.05--10 GeV mass range. Electroforming the spherical shell and the
implementation of a shield based on pure water ensures a background level below
0.01 dru. These, combined with the proposed helium-isobutane gas mixture, will
provide sensitivity to the spin-independent nucleon cross-section of cm for a dark matter mass of GeV.
The use of a hydrogen-rich gas mixture with a natural abundance of C
provides sensitivity to spin-dependent nucleon cross-sections more than two
orders of magnitude below existing constraints for dark matter lighter than 1
GeV. The characteristics of the detector also make it suitable for searches of
other dark matter signatures, including scattering of MeV-scale dark matter
with electrons, and super-heavy dark matter with masses around the Planck scale
that leave extended ionisation tracks in the detector.Comment: 19 pages, 14 figure
Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module
Background
The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.
Methodology/Principal Findings
We report the 1.8 A crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.
Conclusions/Significance
Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.National Health and Medical Research Council (Australia) (NHMRC grant 488502)National Institutes of Health (U.S.) (Grant GM62414-0 )Ontario. Ministry of Revenue (Challenge Fund
PPAR-γ Ligands Repress TGFβ-Induced Myofibroblast Differentiation by Targeting the PI3K/Akt Pathway: Implications for Therapy of Fibrosis
Transforming growth factor beta (TGFβ) induced differentiation of human lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. Although the typical TGFβ signaling pathway involves the Smad family of transcription factors, we have previously reported that peroxisome proliferator-activated receptor-γ (PPAR-γ) ligands inhibit TGFβ-mediated differentiation of human lung fibroblasts to myofibroblasts via a Smad-independent pathway. TGFβ also activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway leading to phosphorylation of AktS473. Here, we report that PPAR-γ ligands, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and 15-deoxy-(12,14)-15d-prostaglandin J2 (15d-PGJ2), inhibit human myofibroblast differentiation of normal and idiopathic pulmonary fibrotic (IPF) fibroblasts, by blocking Akt phosphorylation at Ser473 by a PPAR-γ-independent mechanism. The PI3K inhibitor LY294002 and a dominant-negative inactive kinase-domain mutant of Akt both inhibited TGFβ-stimulated myofibroblast differentiation, as determined by Western blotting for α-smooth muscle actin and calponin. Prostaglandin A1 (PGA1), a structural analogue of 15d-PGJ2 with an electrophilic center, also reduced TGFβ-driven phosphorylation of Akt, while CAY10410, another analogue that lacks an electrophilic center, did not; implying that the activity of 15d-PGJ2 and CDDO is dependent on their electrophilic properties. PPAR-γ ligands inhibited TGFβ-induced Akt phosphorylation via both post-translational and post-transcriptional mechanisms. This inhibition is independent of MAPK-p38 and PTEN but is dependent on TGFβ-induced phosphorylation of FAK, a kinase that acts upstream of Akt. Thus, PPAR-γ ligands inhibit TGFβ signaling by affecting two pro-survival pathways that culminate in myofibroblast differentiation. Further studies of PPAR-γ ligands and small electrophilic molecules may lead to a new generation of anti-fibrotic therapeutics
- …