572 research outputs found

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    The transmembrane domain of N-acetylglucosaminyltransferase I is the key determinant for its Golgi subcompartmentation

    Get PDF
    Golgi-resident type–II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment-specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N–acetylglucosaminyltransferase I (GnTI) for its cis/medial-Golgi localization and for protein–protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well-known trans-Golgi enzyme α2,6–sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co-localization analysis and N–glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial-Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub-Golgi localization was not able to complement the GnTI-dependent glycosylation defect. Our results suggest that sequence-specific features in the transmembrane domain of GnTI account for its steady-state distribution in the cis/medial-Golgi in plants, which is a prerequisite for efficient N–glycan processing in vivo

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Whole Genome Characterization of the Mechanisms of Daptomycin Resistance in Clinical and Laboratory Derived Isolates of Staphylococcus aureus

    Get PDF
    Background: Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus. Methods: Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates. Results: On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol. Conclusion: Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus

    Permian high-temperature metamorphism in the Western Alps (NW Italy)

    Get PDF
    During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism has extensively been recorded and dated in the Central, Eastern, and Southern Alps. However, Permian metamorphic ages in the Western Alps so far are constrained by very few and sparsely distributed data. The present study fills this gap. We present U/Pb ages of metamorphic zircon from several Adria-derived continental units now situated in the Western Alps, defining a range between 286 and 266 Ma. Trace element thermometry yields temperatures of 580-890°C from Ti-in-zircon and 630-850°C from Zr-in-rutile for Permian metamorphic rims. These temperature estimates, together with preserved mineral assemblages (garnet-prismatic sillimanite-biotite-plagioclase-quartz-K-feldspar-rutile), define pervasive upper-amphibolite to granulite facies conditions for Permian metamorphism. U/Pb ages from this study are similar to Permian ages reported for the Ivrea Zone in the Southern Alps and Austroalpine units in the Central and Eastern Alps. Regional comparison across the former Adriatic and European margin reveals a complex pattern of ages reported from late Palaeozoic magmatic and metamorphic rocks (and relics thereof): two late Variscan age groups (~330 and ~300 Ma) are followed seamlessly by a broad range of Permian ages (300-250 Ma). The former are associated with late-orogenic collapse; in samples from this study these are weakly represented. Clearly, dominant is the Permian group, which is related to crustal thinning, hinting to a possible initiation of continental rifting along a passive margin

    Molecular Typing and Phenotype Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Blood in Taiwan

    Get PDF
    BACKGROUND: Staphylococcus aureus causes a variety of severe infections such as bacteremia and sepsis. At present, 60-80% of S. aureus isolates from Taiwan are methicillin resistant (MRSA). It has been shown that certain MRSA clones circulate worldwide. The goals of this study were to identify MRSA clones in Taiwan and to correlate the molecular types of isolates with their phenotypes. METHODS: A total of 157 MRSA isolates from bacteremic patients were collected from nine medical centers. They were typed based on polymorphisms in agr, SCCmec, MLST, spa, and dru. Phenotypes characterized included Panton-Valentine leucocidin (pvl), inducible macrolide-lincosamide-streptogramin B resistance (MLSBi), vancomycin (VA) and daptomycin (DAP) minimal inhibitory concentrations (MIC), and superantigenic toxin gene profiles. Difference between two consecutive samples was determined by Mann-Whitney-U test, and difference between two categorical variables was determined by Fisher's exact test. RESULTS: Four major MRSA clone complexes CC1, CC5, CC8, and CC59 were found, including 4 CC1, 9 CC5, 111 CC8, and 28 CC59 isolates. These clones had the following molecular types: CC1: SCCmecIV and ST573; CC5: SCCmecII and ST5; CC8: SCCmecIII, ST239, and ST241, and CC59: SCCmecIV, SCCmecV(T), ST59, and ST338. The toxin gene profiles of these clones were CC1: sec-seg-(sei)-sell-selm-(seln)-selo; CC5: sec-seg-sei-sell-selm-(seln)-selp-tst1; CC8: sea-selk-selq, and CC59: seb-selk-selq. Most isolates with SCCmecV(T), ST59, spat437, and dru11 types were pvl(+) (13 isolates), while multidrug resistance (≥4 antimicrobials) were associated with SCCmecIII, ST239, spa t037, agrI, and dru14 (119 isolates) (p<0.001). One hundred and twenty four isolates with the following molecular types had higher VA MIC: SCCmecII and SCCmecIII; ST5, ST239, and ST241; spa t002, t037, and t421; dru4, dru10, dru12, dru13, and dru14 (p<0.05). No particular molecular types were found to be associated with MLSBi phenotype. CONCLUSIONS: Four major MRSA clone complexes were found in Taiwan. Further studies are needed to delineate the evolution of MRSA isolates

    Identification and in vitro Analysis of the GatD/MurT Enzyme-Complex Catalyzing Lipid II Amidation in Staphylococcus aureus

    Get PDF
    The peptidoglycan of Staphylococcus aureus is characterized by a high degree of crosslinking and almost completely lacks free carboxyl groups, due to amidation of the D-glutamic acid in the stem peptide. Amidation of peptidoglycan has been proposed to play a decisive role in polymerization of cell wall building blocks, correlating with the crosslinking of neighboring peptidoglycan stem peptides. Mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin. We identified the enzymes catalyzing the formation of D-glutamine in position 2 of the stem peptide. We provide biochemical evidence that the reaction is catalyzed by a glutamine amidotransferase-like protein and a Mur ligase homologue, encoded by SA1707 and SA1708, respectively. Both proteins, for which we propose the designation GatD and MurT, are required for amidation and appear to form a physically stable bi-enzyme complex. To investigate the reaction in vitro we purified recombinant GatD and MurT His-tag fusion proteins and their potential substrates, i.e. UDP-MurNAc-pentapeptide, as well as the membrane-bound cell wall precursors lipid I, lipid II and lipid II-Gly5. In vitro amidation occurred with all bactoprenol-bound intermediates, suggesting that in vivo lipid II and/or lipid II-Gly5 may be substrates for GatD/MurT. Inactivation of the GatD active site abolished lipid II amidation. Both, murT and gatD are organized in an operon and are essential genes of S. aureus. BLAST analysis revealed the presence of homologous transcriptional units in a number of gram-positive pathogens, e.g. Mycobacterium tuberculosis, Streptococcus pneumonia and Clostridium perfringens, all known to have a D-iso-glutamine containing PG. A less negatively charged PG reduces susceptibility towards defensins and may play a general role in innate immune signaling

    Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics

    Full text link
    A future Higgs Factory will provide improved precision on measurements of Higgs couplings beyond those obtained by the LHC, and will enable a broad range of investigations across the fields of fundamental physics, including the mechanism of electroweak symmetry breaking, the origin of the masses and mixing of fundamental particles, the predominance of matter over antimatter, and the nature of dark matter. Future colliders will measure Higgs couplings to a few per cent, giving a window to beyond the Standard Model (BSM) physics in the 1-10 TeV range. In addition, they will make precise measurements of the Higgs width, and characterize the Higgs self-coupling. This report details the work of the EF01 and EF02 working groups for the Snowmass 2021 study.Comment: 44 pages, 40 figures, Report of the Topical Group on Higgs Physics for Snowmass 2021. The first four authors are the Conveners, with Contributions from the other author

    Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers.

    Get PDF
    Galloyl catechins, in particular (-)-epicatechin gallate (ECg), have the capacity to abrogate β-lactam resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA); they also prevent biofilm formation, reduce the secretion of a large proportion of the exoproteome and induce profound changes to cell morphology. Current evidence suggests that these reversible phenotypic traits result from their intercalation into the bacterial cytoplasmic membrane. We have endeavoured to potentiate the capacity of ECg to modify the MRSA phenotype by stepwise removal of hydroxyl groups from the B-ring pharmacophore and the A:C fused ring system of the naturally occurring molecule. ECg binds rapidly to the membrane, inducing up-regulation of genes responsible for protection against cell wall stress and maintenance of membrane integrity and function. Studies with artificial membranes modelled on the lipid composition of the staphylococcal bilayer indicated that ECg adopts a position deep within the lipid palisade, eliciting major alterations in the thermotropic behaviour of the bilayer. The non-galloylated homolog (-)-epicatechin enhanced ECg-mediated effects by facilitating entry of ECg molecules into the membrane. ECg analogs with unnatural B-ring hydroxylation patterns induced higher levels of gene expression and more profound changes to MRSA membrane fluidity than ECg but adopted a more superficial location within the bilayer. ECg possessed a high affinity for the positively charged staphylococcal membrane and induced changes to the biophysical properties of the bilayer that are likely to account for its capacity to disperse the cell wall biosynthetic machinery responsible for β-lactam resistance. The ability to enhance these properties by chemical modification of ECg raises the possibility that more potent analogs could be developed for clinical evaluation

    Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis

    Get PDF
    This work was supported by Marie Curie Postdoctoral Fellowships to T.A.W., E. H. and S. L., a European Research Council Advanced Investigator Grant (ERC-2010-AdG-268701) to T.M.E., and a Wellcome Trust Programme Grant (number 045404) to T.M.E. and J.M.L. R.L. acknowledges generous financial support from Deutsche Forschungsgemeinschaft (SFB 593, SFB 987, GRK 1216, LI 415/5), LOEWE program of state Hessen, Max-Planck Gesellschaft, von Behring-Röntgen StiftungMicrosporidians are a diverse group of obligate intracellular parasites that have minimized their genome content and simplified their sub-cellular structures by reductive evolution. Functional studies are limited because we lack reliable genetic tools for their manipulation. Here, we demonstrate that the cristae-deficient mitochondrion (mitosome) of the microsporidian Trachipleistophora hominis is the functional site of iron-sulphur cluster (ISC) assembly, which we suggest is the essential task of this organelle. Cell fractionation, fluorescence imaging and fine-scale immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe-2S] cluster biosynthesis that we biochemically reconstituted using purified recombinant mitosomal ISC proteins. Reconstitution proceeded as rapidly and efficiently as observed for yeast or fungal mitochondrial ISC components. Core components of the T. hominis cytosolic iron-sulphur protein assembly (CIA) pathway were also identified including the essential Cfd1-Nbp35 scaffold complex that assembles a [4Fe-4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that both the ISC and CIA biosynthetic pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of the Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides additional compelling evidence for the ancient chimeric ancestry of eukaryotes.Publisher PDFPeer reviewe
    • …
    corecore