264 research outputs found
Effects of quantized fields on the spacetime geometries of static spherically symmetric black holes
Analytic approximations for the stress-energy of quantized fields in the
Hartle-Hawking state in static black hole spacetimes predict divergences on the
event horizon of the black hole for a number of important cases. Such
divergences, if real, could substantially alter the spacetime geometry near the
event horizon, possibly preventing the black hole from existing. The results of
three investigations of these types of effects are presented. The first
involves a new analytic approximation for conformally invariant fields in
Reissner-Nordstrom spacetimes which is finite on the horizon. The second
focuses on the stress-energy of massless scalar fields in Schwarzschild-de
Sitter black holes. The third focuses on the stress-energy of massless scalar
fields in zero temperature black hole geometries that could be solutions to the
semiclassical backreaction equations near the event horizon of the black hole.Comment: 5 pages. To appear in the "Proceedings of the Eleventh Marcel
Grossmann Meeting on General Relativity", July 2006, Berlin, German
Stress Tensor from the Trace Anomaly in Reissner-Nordstrom Spacetimes
The effective action associated with the trace anomaly provides a general
algorithm for approximating the expectation value of the stress tensor of
conformal matter fields in arbitrary curved spacetimes. In static, spherically
symmetric spacetimes, the algorithm involves solving a fourth order linear
differential equation in the radial coordinate r for the two scalar auxiliary
fields appearing in the anomaly action, and its corresponding stress tensor. By
appropriate choice of the homogeneous solutions of the auxiliary field
equations, we show that it is possible to obtain finite stress tensors on all
Reissner-Nordstrom event horizons, including the extreme Q=M case. We compare
these finite results to previous analytic approximation methods, which yield
invariably an infinite stress-energy on charged black hole horizons, as well as
with detailed numerical calculations that indicate the contrary. The
approximation scheme based on the auxiliary field effective action reproduces
all physically allowed behaviors of the quantum stress tensor, in a variety of
quantum states, for fields of any spin, in the vicinity of the entire family (0
le Q le M) of RN horizons.Comment: 43 pages, 12 figure
Detecting transient gravitational waves in non-Gaussian noise with partially redundant analysis methods
There is a broad class of astrophysical sources that produce detectable,
transient, gravitational waves. Some searches for transient gravitational waves
are tailored to known features of these sources. Other searches make few
assumptions about the sources. Typically events are observable with multiple
search techniques. This work describes how to combine the results of searches
that are not independent, treating each search as a classifier for a given
event. This will be shown to improve the overall sensitivity to
gravitational-wave events while directly addressing the problem of consistent
interpretation of multiple trials.Comment: 11 pages, 5 figure
Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background
We describe a general approach to detection of transient gravitational-wave
signals in the presence of non-Gaussian background noise. We prove that under
quite general conditions, the ratio of the likelihood of observed data to
contain a signal to the likelihood of it being a noise fluctuation provides
optimal ranking for the candidate events found in an experiment. The
likelihood-ratio ranking allows us to combine different kinds of data into a
single analysis. We apply the general framework to the problem of unifying the
results of independent experiments and the problem of accounting for
non-Gaussian artifacts in the searches for gravitational waves from compact
binary coalescence in LIGO data. We show analytically and confirm through
simulations that in both cases the likelihood ratio statistic results in an
improved analysis.Comment: 10 pages, 6 figure
Status of NINJA: the Numerical INJection Analysis project
The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50--1100 Hz and with the frequency's
time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight
months of the fifth LIGO science run (S5) have been used in this search, which
is based on a semi-coherent method (PowerFlux) of summing strain power.
Observing no evidence of periodic gravitational radiation, we report 95%
confidence-level upper limits on radiation emitted by any unknown isolated
rotating neutron stars within the search range. Strain limits below 1.E-24 are
obtained over a 200-Hz band, and the sensitivity improvement over previous
searches increases the spatial volume sampled by an average factor of about 100
over the entire search band. For a neutron star with nominal equatorial
ellipticity of 1.0E-6, the search is sensitive to distances as great as 500
pc--a range that could encompass many undiscovered neutron stars, albeit only a
tiny fraction of which would likely be rotating fast enough to be accessible to
LIGO. This ellipticity is at the upper range thought to be sustainable by
conventional neutron stars and well below the maximum sustainable by a strange
quark star.Comment: 6 pages, 1 figur
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
- …