77 research outputs found
Recommended from our members
Improvements to an Empirical Parameterization of Heterogeneous Ice Nucleation and Its Comparison with Observations
A framework for an empirical parameterization (EP) of heterogeneous nucleation of ice crystals by multiple species of aerosol material in clouds was proposed in a 2008 paper by the authors. The present paper reports improvements to specification of a few of its empirical parameters. These include temperatures for onset of freezing, baseline surface areas of aerosol observed in field campaigns over Colorado, and new parameters for properties of black carbon, such as surface hydrophilicity and organic coatings. The EP's third group of ice nucleus (IN) aerosols is redefined as that of primary biological aerosol particles (PBAPs), replacing insoluble organic aerosols. A fourth group of IN is introduced-namely, soluble organic aerosols.
The new EP predicts IN concentrations that agree well with aircraft data from selected traverses of shallow wave clouds observed in five flights (1, 3, 4, 6, and 12) of the 2007 Ice in Clouds Experiment Layer Clouds (ICE-L). Selected traverses were confined to temperatures between about -25 degrees and -29 degrees C in layer cloud without homogeneously nucleated ice from aloft. Some of the wave clouds were affected by carbonaceous aerosols from biomass burning and by dust from dry lakebeds and elsewhere. The EP predicts a trend between number concentrations of heterogeneously nucleated ice crystals and apparent black carbon among the five wave clouds, observed by aircraft in ICE-L. It is predicted in terms of IN activity of black carbon.
The EP's predictions are consistent with laboratory and field observations not used in its construction, for black carbon, dust, primary biological aerosols, and soluble organics. The EP's prediction of biological ice nucleation is validated using coincident field observations of PBAP IN and PBAPs in Colorado.Keywords: Ice particles, Ice crystals, Aerosol
Visible extreme adaptive optics on extremely large telescopes: Towards detecting oxygen in Proxima Centauri b and analogs
Looking to the future of exo-Earth imaging from the ground, core technology
developments are required in visible extreme adaptive optics (ExAO) to enable
the observation of atmospheric features such as oxygen on rocky planets in
visible light. UNDERGROUND (Ultra-fast AO techNology Determination for
Exoplanet imageRs from the GROUND), a collaboration built in Feb. 2023 at the
Optimal Exoplanet Imagers Lorentz Workshop, aims to (1) motivate oxygen
detection in Proxima Centauri b and analogs as an informative science case for
high-contrast imaging and direct spectroscopy, (2) overview the state of the
field with respect to visible exoplanet imagers, and (3) set the instrumental
requirements to achieve this goal and identify what key technologies require
further development.Comment: SPIE Proceeding: 2023 / 12680-6
Integrated photonic-based coronagraphic systems for future space telescopes
The detection and characterization of Earth-like exoplanets around Sun-like
stars is a primary science motivation for the Habitable Worlds Observatory.
However, the current best technology is not yet advanced enough to reach the
10^-10 contrasts at close angular separations and at the same time remain
insensitive to low-order aberrations, as would be required to achieve
high-contrast imaging of exo-Earths. Photonic technologies could fill this gap,
potentially doubling exo-Earth yield. We review current work on photonic
coronagraphs and investigate the potential of hybridized designs which combine
both classical coronagraph designs and photonic technologies into a single
optical system. We present two possible systems. First, a hybrid solution which
splits the field of view spatially such that the photonics handle light within
the inner working angle and a conventional coronagraph that suppresses
starlight outside it. Second, a hybrid solution where the conventional
coronagraph and photonics operate in series, complementing each other and
thereby loosening requirements on each subsystem. As photonic technologies
continue to advance, a hybrid or fully photonic coronagraph holds great
potential for future exoplanet imaging from space.Comment: Conference Proceedings of SPIE: Techniques and Instrumentation for
Detection of Exoplanets XI, vol. 12680 (2023
Multipotent Capacity of Immortalized Human Bronchial Epithelial Cells
While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs) display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lung when experimentally tested in cell culture. When cultured in three different three-dimensional (3D) systems, subtle changes in the microenvironment result in unique responses including the ability of HBECs to differentiate into multiple central and peripheral lung cell types. These new findings indicate that the adult human lung contains a multipotent progenitor cell whose differentiation potential is primarily dictated by the microenvironment. The HBEC system is not only important in understanding mechanisms for specific cell lineage differentiation, but also for examining changes that correlate with human lung diseases including lung cancer
Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests
Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments
Age at first birth in women is genetically associated with increased risk of schizophrenia
Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study
It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest
Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
- …