49 research outputs found
Strategic and operational services for workload management in the cloud
In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts' resources, resulting in economically undesirable customer behavior.
In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework
MorphoSys: efficient colocation of QoS-constrained workloads in the cloud
In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for unencumbered use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models -- often used to characterize real-time workloads -- be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the infrastructure provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MORPHOSYS: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of arbitrary workloads in a dynamic setting. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. These results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MORPHOSYS.National Science Foundation (0720604, 0735974, 0820138, 0952145, 1012798
AngelCast: cloud-based peer-assisted live streaming using optimized multi-tree construction
Increasingly, commercial content providers (CPs) offer streaming solutions using peer-to-peer (P2P) architectures, which promises significant scalabil- ity by leveraging clients’ upstream capacity. A major limitation of P2P live streaming is that playout rates are constrained by clients’ upstream capac- ities – typically much lower than downstream capacities – which limit the quality of the delivered stream. To leverage P2P architectures without sacri- ficing quality, CPs must commit additional resources to complement clients’ resources. In this work, we propose a cloud-based service AngelCast that enables CPs to complement P2P streaming. By subscribing to AngelCast, a CP is able to deploy extra resources (angel), on-demand from the cloud, to maintain a desirable stream quality. Angels do not download the whole stream, nor are they in possession of it. Rather, angels only relay the minimal fraction of the stream necessary to achieve the desired quality. We provide a lower bound on the minimum angel capacity needed to maintain a desired client bit-rate, and develop a fluid model construction to achieve it. Realizing the limitations of the fluid model construction, we design a practical multi- tree construction that captures the spirit of the optimal construction, and avoids its limitations. We present a prototype implementation of AngelCast, along with experimental results confirming the feasibility of our service.Supported in part by NSF awards #0720604, #0735974, #0820138, #0952145, #1012798 #1012798 #1430145 #1414119. (0720604 - NSF; 0735974 - NSF; 0820138 - NSF; 0952145 - NSF; 1012798 - NSF; 1430145 - NSF; 1414119 - NSF
Communication Network Design: Balancing Modularity and Mixing via Optimal Graph Spectra
By leveraging information technologies, organizations now have the ability to
design their communication networks and crowdsourcing platforms to pursue
various performance goals, but existing research on network design does not
account for the specific features of social networks, such as the notion of
teams. We fill this gap by demonstrating how desirable aspects of
organizational structure can be mapped parsimoniously onto the spectrum of the
graph Laplacian allowing the specification of structural objectives and build
on recent advances in non-convex programming to optimize them. This design
framework is general, but we focus here on the problem of creating graphs that
balance high modularity and low mixing time, and show how "liaisons" rather
than brokers maximize this objective
Serving deep learning models in a serverless platform
Serverless computing has emerged as a compelling paradigm for the development
and deployment of a wide range of event based cloud applications. At the same
time, cloud providers and enterprise companies are heavily adopting machine
learning and Artificial Intelligence to either differentiate themselves, or
provide their customers with value added services. In this work we evaluate the
suitability of a serverless computing environment for the inferencing of large
neural network models. Our experimental evaluations are executed on the AWS
Lambda environment using the MxNet deep learning framework. Our experimental
results show that while the inferencing latency can be within an acceptable
range, longer delays due to cold starts can skew the latency distribution and
hence risk violating more stringent SLAs
MORPHOSYS: efficient colocation of QoS-constrained workloads in the cloud
In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be
allocated for use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the IaaS provider to safely transform SLAs from one form to another
for the purpose of achieving more efficient colocation. Towards that goal, we present MorphoSys: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of workloads. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. The results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MorphoSys.First author draf
A Divide-and-Conquer Algorithm for Betweenness Centrality
The problem of efficiently computing the betweenness centrality of nodes has
been researched extensively. To date, the best known exact and centralized
algorithm for this task is an algorithm proposed in 2001 by Brandes. The
contribution of our paper is Brandes++, an algorithm for exact efficient
computation of betweenness centrality. The crux of our algorithm is that we
create a sketch of the graph, that we call the skeleton, by replacing subgraphs
with simpler graph structures. Depending on the underlying graph structure,
using this skeleton and by keeping appropriate summaries Brandes++ we can
achieve significantly low running times in our computations. Extensive
experimental evaluation on real life datasets demonstrate the efficacy of our
algorithm for different types of graphs. We release our code for benefit of the
research community.Comment: Shorter version of this paper appeared in Siam Data Mining 201
Strategic and operational services for workload management in the cloud (PhD thesis)
In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts’ resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework.
(Major Advisor: Azer Bestavros