22 research outputs found
Modulation of the secretion of potassium by accompanying anions in humans
Modulation of the secretion of potassium by accompanying anions in humans. In animals, secretion of potassium (K) in the cortical collecting duct (CCD) is modulated by the properties of the accompanying anion. In humans, results are inconclusive as previous studies have not differentiated between a kaliuresis due to a rise in the concentration of K from one due to an increase in the volume of urine. Our purpose was to study the effects of chloride (Cl) and bicarbonate on the secretion of K in the CCD in humans using the transtubular K concentration gradient (TTKG), a semi-quantitative index of secretion of K in the terminal CCD. After control blood and urine samples were obtained, all subjects ingested 0.2mg fludrocortisone to ensure that mineralocorticoids were not limiting the secretion of K. The anionic composition of the urine was varied using three protocols: Normal subjects (N = 11) ingested cystine and methionine to induce sulfaturia; nine subjects with a contracted ECF volume (to lower the concentration of Cl in the urine) were also studied during sulfaturia following the ingestion of cystine and methionine; 13 normovolemic subjects were studied during bicarbonaturia following the ingestion of acetazolamide. When the concentration of Cl in the urine was > 15 mmol/liter, sulfate had no effect on the TTKG. With lower concentrations of Cl in the urine, the TTKG rose 1.5-fold. The TTKG rose 1.8-fold in the presence of bicarbonaturia despite concentrations of Cl in the urine that were >15 mmol/liter, suggesting that bicarbonate has additional effects on this K secretory process. At comparable concentrations of sulfate and bicarbonate in the urine, the TTKG was increased only with bicarbonaturia. We conclude that it is important to control for the effects of the accompanying anions when evaluating the role of the kidney in disorders of K homeostasis
Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway
We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4–SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin–angiotensin–aldosterone system